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Foreword

One of the oldest and liveliest branches of mathematics, Number The-
ory, is noted for its theoretical depth and applications to other fields, in-
cluding representation theory, physics, and cryptography. The forefront of
Number Theory is replete with sophisticated and famous open problems;
at its foundation, however, are basic, elementary ideas that can stimulate
and challenge beginning students. This textbook takes a problem-solving
approach to Number Theory, situating each theoretical concept within
the framework of some examples or some problems for readers to solve.
Starting with the essentials, the text covers divisibility, powers of inte-
gers, floor function and fractional part, digits of numbers, basic methods
of proof (extremal arguments, pigeonhole principle, induction, infinite de-
scent, inclusion-exclusion), arithmetic function, important divisibility the-
orems and Diophantine equations. Emphasis is also placed on the pre-
sentation of some special problems involving quadratic residues, Fermat,
Mersenne, and perfect numbers, as well as famous sequences of integers
such as Fibonacci, Lucas, and other important ones defined by recursive
relations. By thoroughly discussing interesting examples and applications
and by introducing and illustrating every key idea, by relevant problems of
various levels of difficulty, the book motivates, engages and challenges the
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reader. The exposition proceeds incrementally, intuitively and rigorously
uncovers deeper properties.

A special feature of the book is an outstanding selection of genuine
Olympiad and other important mathematical contest problems solved us-
ing the methods already presented. The book brings about the unique and
vast experience of the authors. It captures the spirit of an important math-
ematical literature and distills the essence of a rich problem-solving culture.

"Number Theory: Structures, Examples and Problems” will appeal to
senior high school and undergraduate students, their instructors, as well as
to all who would like to expand their mathematical horizons. It is a source
of fascinating problems for readers at all levels and widely opens the gate
to further explorations in mathematics.
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Notation

Z the set of integers

/. the set of integers modulo n

N the set of positive integers

No the set of nonnegative integers

Q the set of rational numbers

Qr the set of positive rational numbers
Q° the set of nonnegative rational numbers
Q" the set of n-tuples of rational numbers
R the set of real numbers

R the set of positive real numbers

RO the set of nonnegative real numbers
R™ the set of n-tuples of real numbers

C the set of complex numbers

|A| the number of elements in the set A
ACB A is a proper subset of B

ACB A is a subset of B

A\ B A without B (set difference)

ANB the intersection of sets A and B
AUB the union of sets A and B

a€cA the element a belongs to the set A
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nlm n divides m

ged(m,n) the greatest common divisor of m,n
lem(m,n) the least common multiple of m,n
m(n) the number of primes <n

7(n) number of divisors of n

o(n) sum of positive divisors of n

a=b (mod m) a and b are congruent modulo m

® Euler’s totient function

ordm,(a) order of a modulo m

I Mébius function

ARak—1 - - - Go(y) base b representation

S(n) the sum of digits of n
(f1, f2,---, fm) factorial base expansion
|x] floor of z

[x] celling of x

{z} fractional part of
ep Legendre’s function
p*||n p* fully divides n

fn Fermat’s number

M, Mersenne’s number
(%) Legendre’s symbol
F, Fibonacci’s number
L, Lucas’ number

P, Pell’s number

(Z) binomial coefficient
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1
Divisibility

1.1 Divisibility
For integers a and b, a # 0, we say that a divides b if b = ac for some
integer ¢. We denote this by a|b. We also say that b is divisible by a or that
b is a multiple of a.
Because 0 = a - 0, it follows that a|0 for all integers a, a # 0.
Straight from the definition we can derive the following properties:
.If alb, b # 0, then |a| < [b];
.If a|b and a|c, then a|ab + Be for any integers « and 3;
. If a|b and a|b £ ¢, then ac;
. ala (reflexivity);
. If a|b and b|c, then a|c (transitivity);
. If a|b and b|a, then |a| = |b|.
The following result is called the Division Algorithm and it plays an

S O W N

important role:
Theorem. For any positive integers a and b there exists a unique pair

(q,7) of nonnegative integers such that

b=ag+r, r<a.

Proof. If a > b, then ¢g =0 and r =b < a.



16 1. DIVISIBILITY

Ifa=b,theng=1and r=0<a.

If a < b, then there exist positive integers n such that na > b. Let ¢ be
the least positive integer for which (¢g+1)a > b. Then qa < b. Let r = b—agq.
It follows that b=ag+r and 0 < r < a.

For the uniqueness, assume that b = aq’ + 7', where ¢’ and r’ are also
nonnegative integers satisfying 0 < 1’ < a. Then ag+1r = aq’ +1', implying
a(¢q—q') =r'—r, and so a|r’ —r. Hence |r’' —r| > a or |’ —r| = 0. Because
0 <7, r <ayields |[r' —r| < a, we are left with |r' — r| = 0, implying
r’ = r and, consequently, ¢’ = q. O

In the theorem above, when a is divided by b, q is called the quotient
and r the remainder.

Remark. The Division Algorithm can be extended for integers as fol-
lows: For any integers a and b, a # 0, there exists a unique pair (g, r) of
integers such that

b=ag+r, 0<r<]al

Example. Prove that for all positive integers n, the fraction

21n+4
1dn+3

is irreducible.
(15t IMO)
Indeed, from the equality
2(2In+4) —3(l4n+3) = —1

it follows that 21n + 4 and 14n + 3 have no common divisor except for 1,
hence the conclusion.

Problem 1.1.1. Prove that for all integers n:

a) n® — 5n3 + 4n is divisible by 120;

b) n? + 3n + 5 is not divisible by 121.

Solution. a) n® — 5n3 + 4n = n(n? — 1)(n? — 4)

=n(n—1)(n+1)(n—2)(n+2),

the product of five consecutive integers: n —2, n—1,n, n+ 1, n+ 2.
If n € {—2,-1,0,1,2} we get n® —5n +4n = 0 and the property holds.
If n > 3 we can write

2 2
n5—5n3—|—4n:5!(n; ):120(”; )



1.1. DIVISIBILITY 17

and the conclusion follows.

If n < —3, write n = —m, where m > 3, and obtain
2
n® — 5nd + dn = —120(7”;)L )

and we are done.
b) Observe that

n?+3n+5=(n+7)(n—4)+33,

so that 11|n?+3n+5 if and only if 11|(n+7)(n—4). Thus, if 11 { (n+7)(n—4)
then 11 (and hence 121) does not divide n? +3n + 5. So, assume 11 divides
(n+7)(n —4). Then 11|n + 7 or 11|n — 4; but then 11 must divide both
of n+ 7 and n — 4, since (n+7) — (n —4) = 11. Thus, 121|(n+ 7)(n — 4).
However, 1211 33. So 121{n? +3n+5 = (n+ 7)(n —4) + 33. Hence, in all
cases, 1211 n? +3n + 5.

Problem 1.1.2. Let p > 2 be an odd number and let n be a positive
integer. Prove that p divides 17" 4+ 2P" 4+ ...+ (p — 1)P".

Solution. Define £ = p™ and note that &k is odd. Then

A"+ (p—d)f =pld* ' —d"Pp—d)+ -+ (p— )"

Summing up the equalities fromd = 1tod = b
1F 4 2% + ...+ (p—1)*, as claimed.
Problem 1.1.3. Prove that

implies that p divides

34 4 45

is a product of two integers, each of which is larger than 102°92,

1
Solution. The given number is of the form m?* + Zn47 where m = 3%
and

The conclusion follows from the identity

n4 1 1.,)\?
m4+I=m4—|—m2n2+Zn4—m2n2= <m2+§n2> —m2n2 =
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. n? . .
where n is even so - isan integer, and from the inequalities:

2 2

m2—mn+1n2—(m—ﬁ>2+n—>n—
2 47 4

2
— 95°—1 - 910008 (24)2002 -, 12002,

Problem 1.1.4. Find all positive integers n such that for all odd integers
a, if a® < n then aln.

Solution. Let a be the greatest odd integer such that a? < n, hence
n < (a+2)2 If a > 7, then a — 4,a — 2, a are odd integers which divide n.
Note that any two of these numbers are relatively prime, so (a —4)(a —2)a
divides n. It follows that (a — 4)(a — 2)a < (a + 2)? so a® — 6a® + 8a <
a®? +4a+ 4. Then a® — 7a® + 4a — 4 <0 or a?(a — 7) + 4(a — 1) < 0. This
is false, because a > 7, hence a = 1,3 or 5.

Ifa=1,then 12<n <32 son€{l,2,...,8}.

If @ = 3, then 32 <n <52 and 1-3|n, so n € {9,12,15,18,21,24}.

If @ =5, then 52 < n < 72 and 1-3-5|n so n € {30,45}. Therefore
ne{1,2,3,4,5,6,7,8,9,12,15, 18, 21,24, 30, 45}.

Problem 1.1.5. Find the elements of the set

8 _ 2
S:{xemwez}.

2¢+1
3 2
Solution. Since v sy € Z, then
20+ 1
324 1 2
S W L
2¢+1 2 +1

It follows that 2z + 1 divides 27, so
20+ 1€ {£1,+3,+£9,£27} and = € {—14,—5,-2,-1,0,1,4,13},

3 — 2 324 1
since 2x + 1 is odd, w €l & w € Z, so all these
2z +1 2r +1

are solutions.

Problem 1.1.6. Find all positive integers n for which the number ob-
tained by erasing the last digit is a divisor of n.

Solution. Let b be the last digit of the number n and let a be the number
obtained from n by erasing the last digit b. Then n = 10a + b. Since a is

a divisor of n, we infer that a divides b. Any number n that ends in 0 is
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therefore a solution. If b # 0, then a is a digit and n is one of the numbers
11, 12,..., 19, 22, 24, 26, 28, 33, 36, 39, 44, 48, 55, 56, 77, 88 or 99.
Problem 1.1.7. Find the greatest positive integer x such that 235+
divides 2000!.
Solution. The number 23 is prime and divides every 23"¢ number. In

2
_ggOJ = 86 numbers from 1 to 2000 that are divisible by

23. Among those 86 numbers, three of them, namely 23, 2 - 23 and 3 - 232
are divisible by 233. Hence 23%°]2000! and x = 89 — 6 = 83.

Problem 1.1.8. Find the positive integers n with exactly 12 divisors
1=dy <dy < -+ <dia =n such that the divisor with index dy (that is,
dd4 — ].) 8 (dl +ds + d4)dg.

all, there are {

(1989 Russian Mathematical Olympiad)

Solution. Of course, there is 1 < i < 12 such that d; = d; +ds+d4. Since
d; > d4, we have i > 5. Also, observe that d;jdi3—; = m for all j and since
didg = dg,—1 < n, we must have ¢ < 5, thus ¢ =5 and d; + d2 + dy = ds.
Also, dg,—1 = dsdg = n = dy2, thus dy = 13 and ds = 14 + ds. Of course,
do is the smallest prime divisor of n and since dy = 13, we can only have
dy € {2,3,5,7,11}. Also, since n has 12 divisors, it has at most 3 prime
divisors. If do = 2 then ds = 16 and then 4 and 8 are divisors of n, smaller
than d4y = 13, impossible. A similar argument shows that do = 3 and
ds = 17. Since n has 12 divisors and is a multiple of 3 - 13 - 17, the only
possibilities are 9-13-17, 3-1697 or 3 - 13 - 289. One can easily check that
only 9-13-17 = 1989 is a solution.

Problem 1.1.9. Let n be a positive integer. Show that any number
greater than n*/16 can be written in at most one way as the product of

two of its divisors having difference not exceeding n.
(1998 St. Petersburg City Mathematical Olympiad)

First Solution. Suppose, on the contrary, that there exista > c¢>d > b
with a —b<nand ab=cd >n*/16. Put p=a+b,q=a—b, r =c+d,
s =c—d. Now

p? —¢® = 4ab = 4ded = 1r? — s2 > n*/4.

Thus p? — 12 = ¢ — 52 < ¢®> <n% But r2 > n*/4 (sor >n?/2) and p > 7,
SO
P> (1224 1) — (0227 > P 1 1,



20 1. DIVISIBILITY

a contradiction.

Second solution. Again, suppose that ab = cd > n*/16, with a > ¢,d
and n > a —b. If we let p = gcd(a, ¢), we can find positive integers p, g, 7, s
such that a = pg, b = rs, c = pr, d = ¢s. Then a > ¢ = ¢q > r and
a>d = p>s,so that

n>pg—rs
>(s+1)(r+1)—rs
=r+s+1
> 2V + 1.
2 2 2
-1 -1 1
Thus b < (n2 ) < n?/4, and a < (n2 ) +n = (n;— >

TLQ—

2
1
Therefore ab < ( ) < nt /16, a contradiction.

Proposed problems

Problem 1.1.10. Show that for any natural number n, between n? and
(n+1)? one can find three distinct natural numbers a, b, ¢ such that a2 + b?
is divisible by c.

(1998 St. Petersburg City Mathematical Olympiad)

Problem 1.1.11. Find all odd positive integers n greater than 1 such
that for any relatively prime divisors a and b of n, the number a +b—1 is

also a divisor of n.
(2001 Russian Mathematical Olympiad)

Problem 1.1.12. Find all positive integers n such that 37! + 57!
divides 3™ + 5™.

(1996 St. Petersburg City Mathematical Olympiad)
Problem 1.1.13. Find all positive integers n such that the set
{n,n+1,n+2,n+3,n+4,n+5}

can be split into two disjoint subsets such that the products of elements in
these subsets are the same.

(12th IMO)
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Problem 1.1.14. The positive integers d;, da, . .., d, divide 1995. Prove
that there exist d; and d; among them, such that the numerator of the
reduced fraction d;/d; is at least n.

(1995 Israeli Mathematical Olympiad)

Problem 1.1.15. Determine all pairs (a, b) of positive integers such that
ab® + b + 7 divides a®b + a + b.

(39" TMO)

Problem 1.1.16. Find all integers a,b,c with 1 < a < b < ¢ such that
(a—1)(b—1)(c—1) is a divisor of abc — 1.

(3374 IMO)
Problem 1.1.17. Find all pairs of positive integers (z,y) for which

22 + 2
r—y

is an integer which divides 1995.
(1995 Bulgarian Mathematical Olympiad)

Problem 1.1.18. Find all positive integers (z,n) such that 2™ +2" 41
is a divisor of z" ! 4 2+ 4 1.

(1998 Romanian IMO Team Selection Test)

Problem 1.1.19. Find the smallest positive integer K such that every
K-element subset of {1,2,...,50} contains two distinct elements a, b such
that a + b divides ab.

(1996 Chinese Mathematical Olympiad)

1.2  Prime numbers

The integer p > 1 is called a prime if there is no integer d > 1 such that
d|p. Any integer n > 1 has at least a prime divisor. If n is a prime, then
that prime divisor is n itself. If n is not a prime, then let a > 1 be its
least divisor. Then n = ab, where 1 < a < b. If a were not a prime, then
a = ajaz with 1 < a; < as < a and aq|n, contradicting the minimality of
a.
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An integer n > 1 that is not a prime is called composite. If n is a com-
posite integer, then it has a prime divisor p not exceeding /n. Indeed, as
above, n = ab, where 1 < a < b and a is the least divisor of n. Then n > a2,
hence a < y/n.

The following result is known for more than 2000 years:

Theorem 1.2.1. (Euclid!) There are infinitely many primes.

Proof. Assume by way of contradiction that there are only a finite num-
ber of primes: p; < p1 < -+ < pm. Consider the number P = p1ps ... pn+1.

If P is a prime, then P > p,,, contradicting the maximality of p,,. Hence
P is composite and, consequently, it has a prime divisor p > 1 which is one
of the primes p1,p2,...,Pm, say pg. It follows that pglp1...pk...pm + 1.
This, together with pg|p1 ...k - .. pm, implies pi|1, a contradiction. |

232582657 _ 1 Tt was discovered in

Remark. The largest known prime is
2006 and it has 9808358 digits.

The fundamental result in arithmetics pertains to the factorization of
integers:

Theorem 1.2.2. (The prime factorization theorem) Any integer n > 1
has a unique representation as a product of primes.

Proof. The existence of such a representation can be obtained as follows:
Let p; be a prime divisor (factor) of n. If p; = n, then n = p; is the prime
factorization of n. If p; < n, then n = pyr1, where r; > 1. If r; is a prime,
then n = pips where po = 71, is the desired factorization of n. If ry is
composite, then r; = pary, where ps is a prime, 72 > 1 and so n = p1pars.
If o is a prime, then n = pipsops where ro = p3 and we are done. If ry is
composite, then we continue this algorithm, obtaining a sequence of integers
ry > 19 > -+ > 1. After a finite number of steps, we reach rp_; = 1, that
isn=pip2...pk.

For the uniqueness, let us assume that there is at least a positive integer
n such that

n=pip2...-Pr =4q14q2 .. .qn

where p1,p2,..., Pk, q1,92,--.,qn are primes. It is clear that £ > 2 and
h > 2. Let n be the minimal such integer. We claim that p; # ¢; for
any ¢ = 1,2,...,k, j = 1,2,...,h. If, for example, pr = gn = p, then

L Buclid of Alezandria (about 325BC - about 365BC) is the most prominent math-
ematician of antiquity best known for his treatise on mathematics ”The Elements”.
The long lasting nature of ”The Elements” must make Euclid the leading mathematics

teacher of all time.
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n =n/p=p1...pk-1 = q...qh—1 and 1 < n’ < n, contradicting the
minimality of n. Assume without loss of generality that p; is the least
prime factor of n in the above representations. By applying the Division
Algorithm it follows that

q1 =p1c1+711
q2 = p1C2 + 72

Qn = P1Ch + Th,

where 1 <r; <p1,i=1,...,h.
We have

n=qiq2...qn = (p1c1 +r1)(prc2 +12) ... (p1ch + Th).

Expanding the last product we obtain n = Ap; + r1ra... 7. Setting
n' = rirg...7ry we have n = p1pa...pr = Ap1 +n'. It follows that pi|n’
and n’ = p1s1ss...5s;, where s1, S2,...,8; are primes.

On the other hand, using the factorization of 7,79, ..., 7, into primes,
all their factors are less than r; < p;. From n’ = riry ...}, it follows that
n’ has a factorization into primes of the form n’ = t1t5 . ..¢;, where t; < p1,
s =1,2,...,7. This factorization is different from n’ = pys1ss2...s;. But
n' < n, contradicting the minimality of n. O

From the above theorem it follows that any integer n > 1 can be written
uniquely in the form

n=pi...pe*,
where p1,...,pxr are distinct primes and ag,...,q; are positive integers.
This representation is called the canonical factorization of n.

An immediate application of the prime factorization theorem is an alter-
native way of proving that there are infinitely many primes.

As in the previous proof, assume that there are only finitely many primes:
p1 <p2 < -+ <pm. Let

i 1 1 S |
N:HO+7+W+E+W>=H T
i— ) i=11— —
Di
On the other hand, by expanding and by using the canonical factorization
of positive integers, we obtain

11
N=1+z4-+...
+5+3+
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m
yielding H pi 1= 00, a contradiction. We have used the well-known fact

K2

that the harmonic series

T+t st
stz

diverges and the expansion formula
1 2
—— =1+4+z+az+... (for|z|<1)
1—x
which can also be interpreted as the summation formula for the infinite
geometric progression 1, x, x2, ...
From the formula
= P _
Pl

using the inequality 1 +¢ < e?, t € R, we can easily derive

1
>Lo
iz Pi
Even though there are no definitive ways to find primes, the density of
primes (that is, the average appearances of primes among integers) has
been determined for about 100 years. This was a remarkable result in the
mathematical field of Analytic Number Theory showing that
m(n)

lim =1
n—oo n ’

logn

where 7(n) denotes the number of primes < n. The relation above is known
as the Prime Number Theorem. It was proved by Hadamard? and de la
Vallée Poussin® in 1896. An elementary, but difficult proof, was given by
Erdos* and Selberg®.

2 Jacques Salomon Hadamard (1865-1963), French mathematician whose most impor-

tant result is the Prime Number Theorem which he proved in 1896.
3 Charles Jean Gustave Nicolas de la Vallée Poussin (1866-1962), Belgian mathe-

matician who proved the Prime Number Theorem independently of Hadamard in 1896.
4Paul Erdds (1913-1996), one of the greatest mathematician of the 20" century.
Erdos posed and solved problems in number theory and other areas and founded the
field of discrete mathematics.
5Atle Selberg (1917- ), Norwegian mathematician known for his work in analytic

number theory, and in the theory of automorphic forms.
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The most important open problems in Number Theory involve primes.
The recent book of David Wells [Prime Numbers: The Most Mysterious
Figures in Maths, John Wiley and Sons, 2005] contains just few of them.
We mention here only three such open problems:

1) Consider the sequence (A )n>1, An = /Pnt1—+/Pn, Where p, denotes
the n*" prime. Andrica’s Conjecture states that the following inequality
holds

A, <1,

for any positive integer n. Results connected to this conjecture are given
in D. Andrica [On a Conjecture in Prime Number Theory, Proc. Algebra
Symposium, ”Babes-Bolyai” University of Cluj, 2005, pp.1-8]. The search
given by H.J. Smith has gown past n = 26 - 1010, so it is highly likely the
conjecture is true.

2) If p is prime such that p+2 is also a prime, then p and p+2 are called
twin primes. It is not known if there are infinitely many twin primes. The
largest such pair is 100314512544015- 2171960 4 1 and it was found in 2006.

3) The following property is conjectured by Michael Th. Rassias, an IMO
Silver Medail in 2003 in Tokyo: For any prime p greater than two there are
two distinct primes p1, p2 such that

_ prtpatl
b= 4! .

This is equivalent to the following statement: For any prime p greater
than two there are two primes p; < pa such that (p—1)p1, p2 are consecutive
integers [Octogon Mathematical Magazine, Vol.13, No.1.B, 2005, page 885].

For a prime p we say that p* fully divides n and write p*||n if k is the
greatest positive integers such that p*|n.

Problem 1.2.1. Prove that for any integer n > 1 the number n®+n*41
1s mot a prime.

Solution. We have

nPant+l=nS4+nt4nd—nd—n?—n+n’+n+1
=n*n*+n+1)—nn?+n+1)+ 0> +n+1)
=m*+n+1)n*—n+1),

the product of two integers greater than 1. Hence n® +n*+1 is not a prime.
Problem 1.2.2. Find all primes a, b, c such that

ab + be + ac > abe.
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Solution. Assume that a < b < c¢. If a > 3 then ab+bc+ac < 3be < abe,

a contradiction. Since a is prime, it is left that a = 2.
1 1 1
The inequality becomes 2b + 2¢ + bec > 2bc, hence — + — > —.
c

b~ 2
If b> 5, then ¢ > 5 and

false.

Therefore b < 5, that is

1° b =2 and c is any prime;

2°b=3 and cis 3 or 5.

Problem 1.2.3. Find all the positive integers a,b for which a* + 4b* is
a prime.

Solution. Observe that

a’ +4b* = o’ + 46" + 4a*V® — 4a%H?
= (a® +2b%)* — 4a%V?
= (a® 4 2b* + 2ab)(a® + 2b* — 2ab)
=[(a +b)* +b*[(a — )* +b7].

As (a + b)2 + b2 > 1, then a* + 4b* can be a prime number only if
(a —b)? + b% = 1. This implies @ = b = 1, which is the only solution of the
problem.

Problem 1.2.4. Let p,q be two distinct primes. Prove that there are

positive integers a,b so that the arithmetic mean of all the divisors of the

number n = p® - q° is also an integer.
(2002 Romanian Mathematical Olympiad)
Solution. The sum of all divisors of n is given by the formula
(Ltp+p’+ +p)(A+g+¢* +- 44,

as it can be easily seen by expanding the brackets. The number n has
(a+1)(b+ 1) positive divisors and their arithmetic mean is

Atp+p*+ - +p) (1 +q+d®+-+4¢")
(a+1)(b+1) ’

If p and ¢ are both odd numbers, we can take a = p and b = ¢, and it is

M =

easy to see that m is an integer.
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If p = 2 and ¢ odd, choose again b = ¢ and consider a +1 =1+ ¢+ ¢*> +
<o gL Thenm=1+2+22+ ... 422 and it is an integer.
For podd and ¢ = 2, set a = p and b = p+ p? +p3 +--- + pP~ 1. The
solution is complete.
Problem 1.2.5. Let p,q,r be primes and let n be a positive integer such
that
Pt gt =1

Prove that n = 1.
(2004 Romanian Mathematical Olympiad)

Solution. Clearly one of the primes p, g or 7 is equal to 2. If r = 2 then
p" + ¢ = 4, false, so assume that p > g = 2.

Consider the case when n > 1 is odd; we have
(p+2)(p" ' =2p" 2 4 2%p" 0 — g 2" =02
Notice that
p Tt 2pt TR0 o =2 (p—2) (pn 22 ) >

and p+ 2 > 1 hence both factors are equal to r. This rewrites as p™ + 2" =
(p+2)% = p? + 4p + 4, which is false for n > 3.

Consider the case when n > 1 is even and let n = 2m. It follows that
pm = a2 — b, 2™ = 2ab and r = a® + b?, for some integers a,b with
(a,b) = 1. Therefore, a and b are powers of 2, so b = 1 and a = 2™ 1.
This implies p™ = 4™~ ! — 1 < 4™, so p must be equal to 3. The equality
3™ =4m~1 _ 1 fails for m = 1 and also for m > 2, as 4™~ ! > 3™ 4+ 1, by
induction.

Consequently n = 1. Take for example p = 23, ¢ = 2 and r = 5.

Problem 1.2.6. Let a,b, ¢ be non zero integers, a # c, such that

a_a2+b2

c 24 b2
Prove that a®> + b + ¢% cannot be a prime.

(1999 Romanian Mathematical Olympiad)
a® + b2

2+ b2
Since a # c, it follows that b? = ac and therefore:

Solution. The equality - is equivalent to (a—c)(b* —ac) = 0.
c

A+l +P=a’4ac+PF=ad*>+2ac+ P —v?
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=(a+c)? =t =(a+c—b)(a+c+D).

Now, clearly, a® + b + ¢ > 3, so, if a® +b? + ¢? is a prime number, then
only four cases are possible:

()a+c—b=1landa+c—b=a’+b*+c%

(2)a+c+b=1and a+c+b=a®+b>+c?

(B)a+c—b=-1land a+c+b=—(a®+b*+ c?), and finally:

(4)a+c+b=—-land a+c—b=—(a®+b*+c?).

In the first two cases we are lead to: a®> +b* +¢? —2(a+c¢)+1 =0, or
(a—1)2+(c—1)2+b*=1,hence a =c= 1.

In other cases we obtain: (a +1)%+ (c+1)>+b?> =1, hence a = ¢ = —1.
But a = ¢ is a contradiction.

Problem 1.2.7. Show that each natural number can be written as the
difference of two natural numbers having the same number of prime factors.

(1999 Russian Mathematical Olympiad)

Solution. If n is even, then we can write it as (2n) — (n). If n is odd,
let d be the smallest odd prime that does not divide n. Then write n =
(dn) — ((d — 1)n). The number dn contains exactly one more prime factor
than n. As for (d — 1)n, it is divisible by 2 because d — 1 is even. Its odd
factors are less than d so they all divide n. Therefore (d — 1)n also contains
exactly one more prime factor than n, and dn and (d — 1)n have the same
number of prime factors.

Problem 1.2.8. Let p be a prime number. Find all k € Z such that

v/ k2?2 — pk is a positive integer.
(1997 Spanish Mathematical Olympiad)

Solution. The values are k = (p+ 1)?/4 for p odd (and none for p = 2).

We first consider p = 2, in which case we need k? — 2k = (k—1)? — 1 to
be a positive square, which is impossible, as the only consecutive squares
are 0 and 1.

Now assume p is odd. We first rule out the case where k is divisible by
p: if k = np, then k? — pk = p*n(n — 1), and n and n — 1 are consecutive
numbers, so they cannot both be squares.

We thus assume k£ and p are coprime, in which case k£ and k — p are
coprime. Thus k? — pk is a square if and only if k and k — p are squares,
say k = m? and k —p = n?. Then p = m? —n? = (m + n)(m — n), which
implies m+n=p,m—n=1and k= (p+1)?/4.
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Problem 1.2.9. Let p > 5 be a prime number and
X ={p—-n?neN,n?<p}

Prove that X contains two distinct elements x,y such that x # 1 and x

divides y.
(1996 Balkan Mathematical Olympiad)

Solution. Take m such that m? < p < (m + 1)? and write p = k + m?,
with 1 < k < 2m. Since p — (m — k)? = k(2m — k + 1) we have p — m?|p —
(m — k)2 Of course, k # m since p is a prime number. Also, m — k < m
and —m + k # m since p is not composite. The only case which remains is

k = 1. Since m is even, p — (m — 1)? divides p — 1 we are done again.

Proposed problems

Problem 1.2.10. For each integer n such that n = pipopsps, where
Pp1, P2, P3, p4 are distinct primes, let

di=1<dy<ds<---<dig=n

be the sixteen positive integers which divide n. Prove that if n < 1995,
then dg — ds 75 22.

(1995 Irish Mathematical Olympiad)

Problem 1.2.11. Prove that there are infinitely many positive integers
a such that the sequence (zp)n>1, 2n = n* + a, does not contain any prime

number.
(11th IMO)

Problem 1.2.12. Let p, ¢, r be distinct prime numbers and let A be the
set

A={p®®r°: 0<a,b,c<5}.

Find the smallest integer n such that any n-element subset of A contains

two distinct elements z, y such that x divides y.

(1997 Romanian Mathematical Olympiad)
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Problem 1.2.13. Prove Bonse’s inequality:

pPip2 .- -DPn > piﬂ

for n > 4, where p; = 2, po = 3,... is the increasing sequence of prime
numbers.

Problem 1.2.14. Show that there exists a set A of positive integers
with the following property: for any infinite set S of primes, there exist two
positive integers m € A and n ¢ A each of which is a product of k distinct

elements of S for some k > 2.
(351" IMO)
Problem 1.2.15. Let n be an integer number, n > 2. Show that if

k% + k +n is a prime number for any integer number k, 0 < k < , / g, then

k? + k 4 n is a prime number for any k, 0 < k < n — 2.
(28" IMO)

Problem 1.2.16. A sequence qi, go, - .. of primes satisfies the following
condition: for n > 3, g, is the greatest prime divisor of ¢,—1 + gn—2 + 2000.
Prove that the sequence is bounded.

(2000 Polish Mathematical Olympiad)

Problem 1.2.17. Let a > b > ¢ > d be positive integers and suppose
ac+bd=0b+d+a—-c)b+d—a+c).

Prove that ab + cd is not prime.

(424 IMO)

1.3 The greatest common divisor and the least
common multiple

For a positive integer k we denote by Dy, the set of all its positive divisors.
It is clear that Dy is a finite set. For positive integers m,n the maximal
element in the set D,, N D, is called the greatest common divisor of m and
n and is denoted by ged(m, n).

In case when D,, N D,, = {1}, we have gcd(m,n) = 1 and we say that m

and n are relatively prime.
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The following properties can be directly derived from the definition
above.

1) If d = ged(m,n), m =dm’, n = dn’, then ged(m’,n’) = 1.

2) If d = ged(m,n), m =d'm”, n=d'n", gedim”,n"”) =1, then d’' = d.

3) If d’ is a common divisor of m and n, then d’ divides ged(m,n).

4) If m = pi"*...pp* and n = pfl...pf’“7 ai, B >0, ap + 6 > 1,

1=1,...,k, then

min(a1,01) min(ag,Bk)

ged(m,n) = p; cDy .

5) If m = ng + r, then ged(m,n) = ged(n, r).

Let us prove the last property. Denote d = ged(m,n) and d' = ged(n, r).
Because d|m and d|n it follows that d|r. Hence d|d’. Conversely, from d’|n
and d'|r it follows that d'|m, so d’|d. Thus d = d'.

An useful algorithm for finding the greatest common divisor of two posi-
tive integers is the Fuclidean Algorithm. It consists of repeated application
of the Division Algorithm:

m=nq +r, 1<r<n

n=rigz+rz, 1<ra<m

Th—2 =Th_1qk + 7k, 1< 71 <TR1
Th—1 = TkQr+1 + ka1, Tht1 =0,

This chain of equalities is finite because n > ry > ro > -+ > 1.
The last nonzero remainder, ry, is the greatest common divisor of m and

n. Indeed, by applying successively property 5) above we obtain
ged(m,n) = ged(n,r) = ged(ri,7m2) = - -+ = ged(Tk—1,7T%) = T

Proposition 1.3.1. For positive integers m and n, there exist integers
a and b such that am + bn = ged(m,n).
Proof. From the Euclidean Algorithm it follows that

rir=m-—ng, 7ro=-mg+n(l+aqq),...

In general, r; = ma; +npB;, i =1,...,k. Because 7,41 = 7,—1 — 7i¢i+1, it
follows that

Qi1 = O—1 — 4104
5i+1 =fFi—1— Qi+1ﬂ¢,
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i=2,...,k— 1. Finally, we obtain gcd(m,n) = rp = apm + Gin. |
We can define the greatest common divisor of several positive integers

mi,ma, ..., ms by considering
dy = ged(my, ma), do = ged(dy, ms),...,ds—1 = ged(ds—o, ms).

The integer d = ds—_1 is called the greatest common divisor of myq, ..., mg
and denoted by ged(ma, ..., ms). The following properties can be easily
verified:

i) ged(ged(m, n), p) = ged(m, ged(n, p)); proving that ged(m, n, p) is well-
defined.

i) If djm;, i =1,...,s, then d|ged(m, ..., ms).

(89573

i) If m; = pi™ .. pp*, i=1,...,s, then

ged(my,...,mg) = prlnin(a“ """ k) .pznin(a“"”’akk).

For a positive integer k& we denote by My the set of all multiples of k.
Opposed to the set Dy, defined earlier in this section, M}, is an infinite set.

For positive integers s and ¢ the minimal element of the set Mg N M, is
called the least common multiple of s and t and is denoted by lem(s, ).

The following properties are easily obtained from the definition above:

1’) If m = lem(s, t), m = ss’ = tt’, then ged(s',t') = 1.

2°) If m’ is a common multiple of s and t and m’ = ss’ = tt/, ged(s',t') =
1, then m’ = m.

3’) If m’ is a common multiple of s and ¢, then m|m’.

) If s =pi"...pp* and t = pll...p’g’“, a by >0, 0 +06; > 1,10 =
1,...,k, then

max(a1,01) max(ay,Bk)

lem(s, t) = p; Dy )

The following property establishes an important connection between ged
and lem:

Proposition 1.3.2. For any positive integers m,n the following relation
holds:

mn = ged(m,n) - lem(m,n).

Proof. Let m = p{* ...p*, n = p[fl...pf’“7 o, Bi >0, 0 + 6 > 1,

i=1,..., k. From properties 4) and 4’) we have

gcd(m, n) . lcm(m7 n) _ prlnin(a1ﬂ1)+max(a1,[31) B .prquin(ak,ﬁk)-&-max(akﬁk)
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_ plllé1+ﬁ1 . .pszrﬁk = mn. O

It is also not difficult to see that if m|s and n|s, then lem(m,n)|s.

Problem 1.3.1. Prove that for any odd integers n, ay, as,...,ay,, the
greatest common divisor of numbers ay,as,...,a, s equal to the greatest
- a1+ az az +as On + Q1
common divisor of g T g 5

Solution. Let

a = ged(ay,ag, .. .,a,) and b:gcd(aldﬁ_a2 a2 + as an+a1>

5 T 5 T g
Then ax = aga, for some integers ay, k = 1,2,...,n. It follows that
Ok + Qp41 O + O a (1)
2 2 ’
where a,+1 = a1 and a,4+1 = 1. Since ay, are odd numbers, ay are also
o + Qg4 .
odd, so ————— are integers.

ak + k41

From relation (1) it follows that a divides for all so a divides b.

On the other hand, Ok + Ght1

= [ib, for some integers GB;. Then
ar + ak41 =0 (mod 2b)
for all k € {1,2,...,n}. Summing up from k£ =1 to k = n yields
2(a1+az+---+a,) =0 (mod 2b),

hence
ar+az+---+a, =0 (modb). (3)

Summing up for £ =1,3,...,n — 2 implies
a1 +as+---+an—1 =0 (mod 2b)
and furthermore
a1 +az+---+ap—1 =0 (mod b). (4)

Subtracting (4) from (3) implies a,, = 0 (mod b), then using relation (2)
we obtain ax = 0 (mod b) for all k. Hence b|a and the proof is complete.
Problem 1.3.2. Prove that for all nonnegative integers a,b,c,d such

that a and b are relatively prime, the system

ar —yz —c=20
br —yt+d=0
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has at least a solution in nonnegative integers.
Solution. We start with a useful lemma.
Lemma. If a and b are relatively prime positive integers, then there are

positive integers u and v such that

au —bv = 1.

Proof. Consider the numbers
1-2,2-a,...,(b—1)-a (1)

When divided by b the remainders of these numbers are distinct. Indeed,
otherwise we have k1 # ko € {1,2,...,b— 1} such that

kia=p1b+r, kea=psb+r
for some integers p1, p2. Hence
(kl — kz)a = (p1 —pg)b =0 (mod b)

Since a and b are relatively prime it follows that |k1 — k2| = 0 (mod b),
which is false because 1 < |k — ka| < b.

On the other hand, none of the numbers listed in (1) is divisible by b.
Indeed, if so, then there is k € {1,2,...,n — 1} such that

k-a = p-b for some integer p.

Let d be the greatest common divisor of k£ and p. Hence k = k1d, p = p1d,
for some integers p1, k1 with ged(p1,k1) = 1. Then kia = p1b and since
gcd(a,b) = 1, we have k1 = b, p1 = a. This is false, because k1 < b.

It follows that one of the numbers from (1) has the remainder 1 when
divided by b so there is u € {1,2,...,b— 1} such that au = bv + 1 and the
lemma, is proved.

We prove now that the system

axr —yz—c=10
br —yt+d=0

with a, b, ¢, d nonnegative integers and gcd(a, b) = 1 has at least a solution

in nonnegative integers.
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Because ged(a, b) = 1 using the lemma, there are positive integers u and
v such that au — bv = 1. Hence

r=cu+dv, y=ad+bc, z=wv, t=u,

is a solution to the system.

Problem 1.3.3. Find all the pairs of integers (m,n) so that the numbers
A=n242mn+3m?2+2, B=2n2+3mn+m?+2, C = 3n2+mn+2m?+1
have a common divisor greater than 1.

Solution. A common divisor of A, B and C is also a divisor for D =
2A-B,E=3A—-C,F=5FE—-7D,G=5D—F, H=18A—-2F - 3F,
I = nG —mF and 126 = 18nl — 5H + 11F = 2-32 - 7. Since 2 and 3
do not divide A, B and C, then d = 7. It follows that (m,n) is equal to
(Ta 42,70+ 3) or (Tc+5,7d + 4).

Problem 1.3.4. Let n be an even positive integer and let a,b be positive

coprime integers. Find a and b if a + b divides a™ + b™.
(2003 Romanian Mathematical Olympiad)

Solution. As n is even, we have
a” = b= (a® =) (@ +a" T ).

Since a + b is a divisor of a? — b2, it follows that a + b is a divisor of
a™—b". In turn, a +b divides 2a™ = (a™ 4+ b") + (a™ — b™), and 2b™ = (a" +
b"™) — (a™—b"). But a and b are coprime numbers, and so ged(2a™, 2b™) = 2.
Therefore a + b is a divisor of 2, hence a = b = 1.

Problem 1.3.5. M is the set of all values of the greatest common divisor
d of the numbers A=2n+3m+13, B=3n+5m+1, C=6n+8m—1,
where m and n are positive integers. Prove that M is the set of all divisors
of an integer k.

Solution. If d is a common divisor of the numbers A, B and C, then d
divides E =3A—C=m+40, F =2B—-C =2m+3and G =2E—F = 77.
We prove that k = 77 satisfies the conditions.

Let d’ be the greatest common divisor of the numbers E and F. Then
d = Tu for m = 7p + 2. Moreover, u = 1 if p # 11lv + 5 and v = 11 if
p = 11v 4+ 5. On the other hand, d’ = 11v for m = 11¢q + 4. Furthermore,
v=1forq#72z+3and v =7 for ¢ =72+ 3.

The number d’ is common divisor of the numbers A, B, C' if and only if
d’ divides A.
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For m = Tp+ 2, 7 divides A = 2n + 21p + 19 if and only if n = 7p’ + 1.
For m = 7(11v+5), A = 2(n+59) + 3 - 77v is divisible by 77 if and only
if n="77t+ 18.

Problem 1.3.6. Find the greatest common divisor of the numbers
A, = 930 4 36042 | g6n+2
whenn=0,1,...,1999.
(2001 Junior Balkan Mathematical Olympiad)
Solution. We have
Ap=14+9+25=35=5-T7.
Using congruence mod 5, it follows that
Ay =27 4 3072 = 937 4 93l = 937 4 (—1)" T (mod 5).

Forn=1, Ay =9 # 0 (mod 5), hence 5 is not a common divisor.
On the other hand,

A, =8" 499" 4 25.25%"
=142-25" 443"
=1+2-8" 44 64"
=1+4+2-1"4+4-1"
=0 (mod 7),

therefore 7 divides A, for all integers n > 0.
Consequently, the greatest common divisor of the numbers Ag, Ay, ..

A1999 is equal to 7.

Problem 1.3.7. Let m > 2 be an integer. A positive integer n is called
m-good if for every positive integer a, relatively prime to n, one has nla™ —
1.

Show that any m-good number is at most 4m(2™ — 1).
(2004 Romanian IMO Team Selection Test)

Solution. If m is odd then n|(n — 1)™ — 1 implies n|2, hence n < 2.

Take now m = 2%q, t > 1, q odd, If n = 2%(2v + 1) is m-good, then
(2v 4+ 1)|(2v — 1)™ — 1, hence (2v + 1)|2™ — 1. Also, if a = 8v + 5 then
(a,n) =1, so

24(a)2 —1 = (a? — 1)(a? + 1)@ + 1) ... (a® "9 +1).
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But a? =5 (mod 8) implies that the exponent of the factor 2 in the last
product is ¢ +2, therefore u < t+2, whence n < 4-2!(2v+1) < 4m(2™—1).

Remark. The estimation is optimal only for m = 2, m = 4.

Problem 1.3.8. Find all triples of positive integers (a,b,c) such that
a’® + b3 + 3 is divisible by a?b, b%c, and c2a.

(2001 Bulgarian Mathematical Olympiad)

Solution. Answer: triples of the form (k,k,k) or (k,2k,3k) or their
permutations.

Let g be the positive greatest common divisor of a and b. Then g* divides
a?b, so ¢g° divides a4+ b3 + ¢3, and ¢ divides c. Thus, the ged of any two of
a, b, c is the ged of all three.

Let (I,m,n) = (a/g,b/g,c/g). Then (I,m,n) is a triple satisfying the
conditions of the problem, and [, m, n are pairwise relatively prime. Because
12, m? and n? all divide I® + m3 + n3, we have

Pm2n?|(1° +m3 +n®).

We will prove that (I,m,n) is either (1,1,1) or a permutation of (1,2,3).
Assume without loss of generality that [ > m > n. We have

B3> +md+n> l2m2n2,
and, therefore, [ > m?n?/3. Because [2|(m? + n?), we also have
2m?® > m3 +nd > 1% > m'nt/9.

If n > 2, then m < 2-9/2* < 2 < n, which contradicts the assumption
that m > n. Therefore, n must be 1. It is not difficult to see that (1,1,1) is
the unique solution with m = 1.

If m > 2, then [ > m because [ and m are relatively prime, so
20 > 1P+ mP 4+ 1> 1’m?,

and [ >m?/2, so

m3+1>12 >m4/47

and m < 4. It is not difficult to check that the only solution here is (3,2,1).
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Proposed problems
Problem 1.3.9. The sequence a1, as, ... of natural numbers satisfies
ged(ai, a;) = ged(i, ) for all i # j.
Prove that a; = i for all 7.
(1995 Russian Mathematical Olympiad)

Problem 1.3.10. The natural numbers a and b are such that
a+1 b+1
+
b a

is an integer. Show that the greatest common divisor of a and b is not

greater than va + b.

(1996 Spanish Mathematical Olympiad)

Problem 1.3.11. The positive integers m, n, m,n are written on a black-
board. A generalized Euclidean algorithm is applied to this quadruple as
follows: if the numbers x, y, u, v appear on the board and = > y, then x —y,
Y, u + v, v are written instead; otherwise x, y — x, u, v + u are written
instead. The algorithm stops when the numbers in the first pair become
equal (they will equal the greatest common divisor of m and n). Prove that
the arithmetic mean of the numbers in the second pair at that moment

equals the least common multiple of m and n.
(1996 St. Petersburg City Mathematical Olympiad)

Problem 1.3.12. How many pairs (z,y) of positive integers with = < y
satisfy ged(z,y) = 5! and lem(z,y) = 5017

(1997 Canadian Mathematical Olympiad)

Problem 1.3.13. Several positive integers are written on a blackboard.
One can erase any two distinct integers and write their greatest common
divisor and least common multiple instead. Prove that eventually the num-

bers will stop changing.
(1996 St. Petersburg City Mathematical Olympiad)

Problem 1.3.14. (a) For which positive integers n do there exist positive

integers x, 4y such that

lem(z,y) =n!, gcd(z,y) = 19987
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(b) For which n is the number of such pairs z,y with < y less than
19987

(1998 Hungarian Mathematical Olympiad)

Problem 1.3.15. Determine all positive integers k for which there exists
a function f : N — Z such that

(a) f(1997) = 1998;

(b) for all a,b € N, f(ab) = f(a) + f(b) + kf(gcd(a,b)).

(1997 Taiwanese Mathematical Olympiad)

Problem 1.3.16. Find all triples (z,y,n) of positive integers such that
ged(z,n+1) =1 and 2" +1 =y" 1
(1998 Indian Mathematical Olympiad)

Problem 1.3.17. Find all triples (m,n,[) of positive integers such that
m+4n = ged(m,n)?, m+1=ged(m,1)?, n+1=ged(n,l)>

(1997 Russian Mathematical Olympiad)

1.4 Odd and even

The set Z of integers can be partitioned into two subsets, the set of odd
integers and the set of even integers: {1, +3,£5,...} and {0, +2, +4, ...},
respectively. Although the concepts of odd and even integers appear
straightforward, they come handly in various number theory problems.
Here are some basic ideas:

1) an odd number is of the form 2k + 1, for some integer k;

2

3

4

5

6

7

even.

an even number is of the form 2m, for some integer m;

the sum of two odd numbers is an even number;

the sum of two even numbers is an even number;

the sum of an odd and even number is an odd number;

the product of two odd numbers is an odd number;

a product of integers is even if and only if at least one of its factors is

—_ — O DO

Problem 1.4.1. Let m and n be integers greater than 1. Prove that m™

1s the sum of m odd consecutive integers.
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Solution. The equality
m'=02k+1)+2k+3)+---+(2k+2m—1)
is equivalent to

m"=2km+(1+3+---+2m—1)

n—2
or m" = 2km + m?2. It follows that k = m{m 5

because m and m™ 2 — 1 have different parities.

which is an integer,

Problem 1.4.2. Let n be a positive integer. Find the sum of all even
numbers between n?> —n + 1 and n® +n + 1.
Solution. We have n? —n+1 =n(n—1)+1 and n?+n+1 = n(n+1)+1,

both odd numbers. It follows that the least even number to be considered

2 —n + 2 and the greatest is n2 + n. The desired sum is

isn
n2—n+2)+m*—n+4)+ - +n>+n-2)+(n*+n)
=n?—n)+2+m*—n)+4+-+ 0P —n)+2n—-2+ (> —n)+2n
=nn®>—n)+20+2+---4+n)=n*—n*+n2+n=n+n.

Problem 1.4.3. Let n be a positive integer and let €1,e9,...,6, €
{=1,1} such that e162 + €263+ - - - + ene1 = 0. Prove that n is divisible by
4.

(Kvant)

Solution. The sum €162 +¢e2e3+ - - - +ene1 has n terms equal to 1 or —1,
so n is even, say n = 2k. It is clear that k of the terms e1e9,e2¢e3,...,6,61
are 1 and k are —1. On the other hand, the product of the terms in the

sum is
(e162)(E2€3) ... (ene1) = €7e3...€2 =1,

hence (+1)*(—1)*¥ = 1. That is k is even and the conclusion follows.

For any integer n = 4m there exist €1,¢€9,...,&, such that
€169 + €063+ -+ €61 =0,
for example
€1 = €4 =E5 =E8 ="+ = E4m—3 = E4m = +1,

) =E3=€g =€E7 ="' =E4m-2 = E4m-1 = —1L.
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Problem 1.4.4. A table with m rows and n columns has all entries —1
or 1 such that for each row and each column the product of entries is —1.
Prove that m and n have the same parity.

Solution. We compute the product P of the m - n entries in two ways,

by rows and by columns, respectively:

P=()(D... (=)= ()" =(=D)"= (=D(=1)...(-1).

mtimes ntimes

The conclusion now follows.
‘We will show such a table for m = 3 and n = 5.

-1 1 1 -1 -1
1 1 -1 1 1
1 -1 1 1 1

Remark. If m and n have the same parity, then the number of tables

with the above property is 2(m—1(n=1)

Proposed problems

Problem 1.4.5. We are given three integers a, b, c such that a,b,c, a +
b—c,a+c—b,b+c—aand a+ b+ care seven distinct primes. Let d be the
difference between the largest and smallest of these seven primes. Suppose
that 800 € {a + b,b+ ¢,c+ a}. Determine the maximum possible value of
d.

Problem 1.4.6. Determine the number of functions f: {1,2,...,n} —
{1995,1996} which satisfy the condition that f(1) 4+ f(2) + -+ f(1996)
is odd.

(1996 Greek Mathematical Olympiad)

Problem 1.4.7. Is it possible to place 1995 different natural numbers
along a circle so that for any two these numbers, the ratio of the greatest
to the least is a prime?

(1995 Russian Mathematical Olympiad)

Problem 1.4.8. Let a, b, ¢,d be odd integers such that 0 < a <b < c¢ < d
and ad = be. Prove that if a + d = 2F and b+ ¢ = 2™ for some integers k
and m, then a = 1.

(25" IMO)
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1.5 Modular arithmetics

Let a,b,n be integers, with n # 0. We say that a and b are congruent
modulo n if n|a —b. We denote this by a = b (mod n). The relation ”=" on
the set Z of integers is called the congruence relation. If m does not divide
a — b, then we say that integers a and b are not congruent modulo n and
we write a Z b (mod n). The following properties can be directly derived:

1) a = a (mod n) (reflexivity);

2) If a=b (mod n) and b = ¢ (mod n), then a = ¢ (mod n) (transitiv-
ity);

3) If a =b (mod n), then b = a (mod n);

4)If a=b (mod n) and ¢ = d (mod n), then a+c¢=b+d (mod n) and
a—c=b-d (mod n);

5) If a = b (mod n), then for any integer k, ka = kb (mod n);

6) If a =0 (mod n) and ¢ =d (mod n), then ac = bd (mod n);

7)) If a; = b; (mod n), i = 1,...,k, then a1...ax = by...bx (mod n).
In particular, if @ = b (mod n), then for any positive integer k, a* = b*
(mod n).

8) We have a = b (mod m;), ¢ = 1,...,k if and only if a = b
(mod lem(my, ... myg)).

In particular, if mq,...,my are pairwise relatively prime, then a = b
(mod m;),i=1,...,k if and only if a = b (mod my,...,mg).

Let us prove the last property. From a = b (mod m;), i = 1,...,k,
it follows that m;la — b, i« = 1,...,k. Hence a — b is a common mul-
tiple of my,...,mg, and so lem(mgy,...,mg)la — b. That is a = b
(mod lem(my, ..., mg)). Conversely, from a = b (mod lem(my,...x)),
and the fact that each m; divides lem(mg,...,my) we obtain a =

(mod my;),i=1,... k.
Theorem 1.5.1. Let a,b,n be integers, n # 0, such that a = ng; + 11,
b=ngs+r2, 0< 11,79 < |n|. Then a =b (mod n) if and only if 11 = ro.
Proof. Because a — b = n(q1 — q2) + (r1 — r2), it follows that nla — b
if and only if n|ry — ro. Taking into account that |ry — re| < |n|, we have

n|ry — ro if and only if 1 = ro. O
Problem 1.5.1. For all the positive integers k < 1999, let S1(k) be the
sum of all the remainders of the numbers 1,2,...,k when divided by 4,

and let Sa(k) be the sum of all the remainders of the numbers k + 1,k +
2,...,2000 when divided by 3. Prove that there is an unique positive integer
m < 1999 so that S1(m) = Sa(m).
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(1999 Romanian Mathematical Olympiad)

Solution. Let Ay = {1,2,3,...,k} and By = {k+ 1,k + 2,...,2000}.
From the division of integers we have

k=4q; +r1, withr; € {07 1,273}. (].)

If s1(k) is the sum of the remainders at the division by 4 of the last r;
elements of Ay, then

Sl(k) = 6q1 + Sl(lﬂ)7 with 0 < Sl(lﬂ) <6 (2)

(if 7y = 0, then set s1(k) = 0).
Using again the division of integers there exist integers g2, 72 such that

2000 — k = 3gy 4 72, with 75 € {0,1,2}. (3)

If so(k) is the sum of the remainders at the division by 3 of the last 75
elements of By, then

Sz(k) = 3q2 + 82(16)7 with 0 < Sg(k) <3 (4)

(again we set so(k) =0, if o = 0).

As S1(k) = Sa(k), s2(k) — s1(k) = 3(2¢1 — q2), 80 3|2¢1 — 2| = |s2(k) —
s1(k)| <6, and |21 — ¢2| < 2. In other words, |2¢1 — ¢2| € {0, 1, 2}.

If 2¢1 = ¢o, then (1) and (3) imply 2000 — (r1 + 72) = 10q1, hence
10|(ry + 72). Then 71 = ro = 0 and ¢; = 200. From (1) it follows that
k = 800, and from (2) and (4) we have S1(800) = S2(800) = 1200.

Furthermore S1(k) < Si(k + 1), and Sa(k) > Sa(k + 1) for all k €
{1,2,...,1998}. Since S1(799) = S1(800) and S»(799) = S5(800) + 2 <
S51(800), we deduce that Sy(k) < Sa(k) for all k € {1,2,...,799}. Since
S1(801) = S1(800) + 1 > S5(800) > S5(801), we derive that Sy (k) > Sa(k)
for all k € {801,802,...,1999}. Consequently, S1(m) = Sz(m) if and only
if m = 800.

Problem 1.5.2. Let n be a positive integer. Show that if a and b are
integers greater than 1 such that 2™ — 1 = ab, then ab — (a — b) — 1 can be

22m

written as k - for some odd integer k and some positive integer m.

(2001 Balkan Mathematical Olympiad)

Solution. Note that ab— (a—b) —1 = (a+1)(b—1). We shall show that
the highest powers of two dividing (a+ 1) and (b— 1) are the same. Let 2°
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and 2! be the highest powers of 2 dividing (a + 1) and (b — 1), respectively.
Because a + 1,6+ 1 < ab+ 1 = 2", we have s,t < n.
Note that 2° divides 2" = ab+ 1 and a + 1, so that

ab=a=-1 (mod 2°).

Hence, b =1 (mod 2%), or 2°|b — 1, so that s < ¢.

Similarly, ab = —b = —1 (mod 2!), so a = —1 (mod 2?), and 2¢|a + 1.
Thus, t < s.

Therefore, s = ¢, the highest power of two dividing (a 4+ 1)(b — 1) is 2s,
and ab — (a — b) — 1 = k - 2% for some odd k.

Problem 1.5.3. Find all nonnegative integers m such that (22m+1)2 41

is divisible by at most two different primes.
(2002 Baltic Mathematics Competition)

Solution. We claim m = 0, 1,2 are the only such integers. It is easy to
check that these values of m satisfy the requirement. Suppose some m > 3
works. Write

(22m+1)2 + 1 _ (22m+1 + 1)2 _ 2 . 22m+1
_ (22m+1 + 2m+1 + 1)(22m+1 _ 2m+1 + 1)

The two factors are both odd, and their difference is 2™%2; hence, they are
relatively prime. It follows that each is a prime power. We also know that
(22m+1)2 = 42m+1 = _1 (mod 5), so one of the factors 22m+1 4 2m+1 4 1
must be a power of 5. Let 22m*! 4 2m+1g + 1 = 5% where s = £1 is the
appropriate sign.

Taking the above equation modulo 8, and using the assumption m > 3,
we obtain 5 =1 (mod 8), so that k is even. Writing k = 21, we have

2mtlom 4 5) = (5! = 1)(5' + 1).

The factor 5! + 1 =2 (mod 4), so 5! — 1 = 2™q for some odd integer a.
But if a = 1, then

2="4+1)=(6'—1)=2(2"+s) —2m =2™ + 25 > 23 — 2,

a contradiction, whereas if a > 3, then 5'—1 > 3-2™ while 5! +1 < 2(2"+5),
another contradiction.

Problem 1.5.4. Find an integer n with 100 < n < 1997 such that n
divides 2™ + 2.
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(1997 Asian Pacific Mathematics Olympiad)

Solution. Note that 2 divides 2™ + 2 for all n. Also, 11 divides 2™ + 2
if and only if n = 6 (mod 10), and 43 divides 2" + 2 if and only if n = 8
(mod 14). Since n = 946 = 2 - 11 - 43 satisfies both congruences, n divides
2" + 2.

Remark. Actually, one can prove that there are infinitely many n such
that n|2™ 4 2. Also, any such n is even since by a theorem of W. Sierpinski
we cannot have n|2" "1 + 1 unless n = 1.

Problem 1.5.5. The number 99...99 (with 1997 nines) is written on a
blackboard. Each minute, one number written on the blackboard is factored
into two factors and erased, each factor is (independently) increased or
diminished by 2, and the resulting two numbers are written. Is it possible

that at some point all of the numbers on the blackboard equal 97
(1997 St. Petersburg City Mathematical Olympiad)

Solution. No, there is always a number congruent to 3 modulo 4: factor-
ing such a number gives one factor congruent to 3 modulo 4, and changing
that by 2 in either direction gives a number congruent to 3 modulo 4.

Problem 1.5.6. Find the smallest positive integer which can be written
both as (i) a sum of 2002 positive integers (not necessarily distinct), each of
which has the same sum of digits and (i) as a sum of 2003 positive integers

not necessarily distinct), each of which has the same sum of digits.
( y g
(2002 Russian Mathematical Olympiad)

Solution. The answer is 10010. First observe that this is indeed a solu-
tion: 10010 = 2002-5 = 1781-4+4-222-13, so we may express 10010 as the sum
of 2002 fives or of 1781 fours and 222 thirteens, where 17814222 = 2003. To
prove minimality, observe that a number is congruent modulo 9 to the sum
of its digits, so two positive integers with the same digit sum are in the same
residue class modulo 9. Let k1 be the digit sum of the 2002 numbers and
ko the digit sum of the 2003 numbers. Then 4k, = 2002k, = 2003ke = 5ko
(mod 9). If k; > 5, the sum of the 2002 numbers is at least 10010; if k2 > 5,
the sum of the 2003 numbers is greater than 10010. However, the solutions
k1 =1,2,3,4 (mod 9) give ks = 8,7,6,5, respectively, so that at least one

of k1 or ks is greater than or equal to 5, and the minimal integer is 10010.
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Proposed problems

Problem 1.5.7. Find all integers n > 1 such that any prime divisor of

n® — 1 is a divisor of (n? —1)(n? — 1).
(2002 Baltic Mathematics Competition)

Problem 1.5.8. Let f(n) be the number of permutations as, ..., a, of
the integers 1,...,n such that
(i) ar =1
(11) \ai —ai+1‘ §27 1= ].7...,TL—]..
Determine whether f(1996) is divisible by 3.
(1996 Canadian Mathematical Olympiad)

Problem 1.5.9. For natural numbers m, n, show that 2" — 1 is divisible
by (2™ — 1)? if and only if n is divisible by m(2™ — 1).

(1997 Russian Mathematical Olympiad)
Problem 1.5.10. Suppose that n is a positive integer and let
di < do <d3 <dy

be the four smallest positive integer divisors of n. Find all integers n such
that

n=ds+d;+d;+di.
(1999 Iranian Mathematical Olympiad)

Problem 1.5.11. Let p be an odd prime. For each i = 1,2,...,p— 1
denote by r; the remainder when 4 is divided by p?. Evaluate the sum

ro+reot-o A+ rpo1.
(Kvant)

Problem 1.5.12. Find the number of integers  with |z| < 1997 such
that 1997 divides 22 + (z + 1)%.

(1998 Indian Mathematical Olympiad)
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1.6 Chinese remainder theorem

In many concrete situations we need to find a solution to some system

of linear congruences of the form
apr =b; (mod my),...,anx =b, (mod my).

Under some additional hypothesis (for instance ged(ax,mg) = 1, k =
1,...,n) this system reduces to the form

x=c (mod my),...,z=¢, (modmy).

In solving this class of systems an important part is played by the fol-

lowing result:

Theorem 1.6.1. (Chinese Remainder Theorem) Let my, ..., m, be pos-
itive integers different from 1 and pairwise relatively prime. Then for any
nonzero integers ay, ..., a, the system of linear congruences

z=a; (modmy),...,z=a, (modm,)

has solutions and any two such solutions are congruent modulo m =
miy...My.
Proof. It is clear that ged (ﬂ, mj> =1,7=1,...,r. Applying Propo-
ey

J
sition 1.3.1 it follows that there is an integer b; such that

m

My =1 dm;), j=1,...,r

=1 (modm). j= ey
Then

D bia; = a; (mod m;), j=1 T

——bjaj =a; i), s

J
Now consider the integer

~m
o = E —bja;.
mj 7

j=1""
We have
m m
= —b.a; d i) = —bi i d 7
xo ]; ; ner (mod m;) - a; (mod m;)
=a; (modm;), i=1,...,7

that is zg is a solution to the system of linear congruences.
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If ;1 is another solution, then ;1 = z¢y (mod m;), i =1,...,r. Applying
property 8) in Section 1.5, the conclusion follows. O
Example. Let us find the solutions to the system of linear congruences

r=2 (mod3), z=1 (mod4), =3 (mod?5).

We proceed as in the proof of the theorem. Because in this case m =
3-4-5 =60, we have to find a solution to each of the congruences

63_01)1 =1 (mod 3), i—obz =1 (mod 4), 65—0b3 =1 (mod 5).
This is equivalent to finding solutions to the congruences
2b1 =1 (mod3), 3be=1 (mod4), 2b3=1 (mod5).
We obtain b; = 2, by = 3, bg = 3. Then
20=20-2-2+15-3-1412-3-3 =233.

Taking into account that all solutions are congruent modulo 60 it follows
that it suffices to take o = 53. All solutions are given by z = 53 + 60k,
keZ.

Problem 1.6.1. We call a lattice point X in the plane visible from the
origin O if the segment OX does not contain any other lattice points besides
O and X. Show that for any positive integer n, there exists a square of n?
lattice points (with sides parallel to the coordinate axes) such that none of

the lattice points inside the square is visible from the origin.
(2002 Taiwanese Mathematical Olympiad)

Solution. Suppose that the lower-left lattice point of such a square has
coordinates (z1,y1). We shall show that it is possible to select (z1,y1) such
that the square of lattice points with (z1,y1) at its corner and n points on
a side contains only invisible points. This can be accomplished by ensuring
that each point has both coordinates divisible by some prime number; this
would imply that by dividing both coordinates by this prime we could find
another lattice point that is between the origin and this point.

Select n? distinct prime numbers and call them p; ;, 1 < 1,5 < n. Now

find x; satisfying the following congruences:

1y =0 (mod p1,1,p1,2---P1,n),
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1+ =0 (mod p21p22...P2.n),

z1+n—1=0 (mod ppiPn2---Pnn)-

Likewise select y; satisfying:
y1 =0 (mod p1,1p21---Pn),

y1+1=0 (mod p12p22...pn2),

ynt+tn—1= 0 (mOd PinbP2n--- 7pn,n)'

Both values must exist by the Chinese Remainder Theorem. Thus we
have proved that it is possible to determine a position for (z1,y1) such
that every point in the square of n? lattice points with (x1,%1) at it’s lower
left corner is associated with some prime by which both of its coordinates
are divisible, thus all points in this square are not visible from the origin.

Problem 1.6.2. Show that there exists an increasing sequence {an 2 4
of natural numbers such that for any k > 0, the sequence {k+ a,} contains

only finitely many primes.
(1997 Czech and Slovak Mathematical Olympiad)

Solution. Let p; be the k-th prime number, & > 1. Set a; = 2. For
n > 1, let a,41 be the least integer greater than a,, that is congruent to —k
modulo pg41 for all & < n. Such an integer exists by the Chinese Remainder
Theorem. Thus, for all k£ > 0, k + a, =0 (mod pg+1) for n >k + 1. Then
at most k+ 1 values in the sequence {k+ a,} can be prime; from the & + 2-
th term onward, the values are nontrivial multiples of px41 and must be

composite. This completes the proof.

Proposed problems

Problem 1.6.3. Let P(z) be a polynomial with integer coeflicients.
Suppose that the integers aq,aq,...,a, have the following property: For
any integer x there exists an ¢ € {1,2,...,n} such that P(z) is divisible by
a;. Prove that there is an ig € {1,2,...,n} such that a;, divides P(z) for

any integer x.

(St. Petersburg City Mathematical Olympiad)
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Problem 1.6.4. For any positive integer set {a1, as, ..., a,} there exists
a positive integer b such that the set {bay, bas, ..., ba,} consists of perfect
powers.

1.7 Numerical systems

1.7.1 Representation of integers in an arbitrary base

The fundamental result in this subsection is given by the following the-
orem:

Theorem 1.7.1. Let b be an integer greater than 1. For any integer
n > 1 there is a unique system (k,ap,a1,...,ar) of integers such that
0<a;<b—-1,i=0,1,...,k, ap #0, and

n=apb® 4+ ap_1F" + - + a1b + ao. (1)

Proof. For the existence, we repeatedly apply the Division Algorithm:
n=qb+r, 0<ri<b-1

g1 =qb+ry, 0<ro<b-—1

Qe—1 = qb+rp, 01, <b—1
where ¢ is the last nonzero quotient.
Let

go=mn, ag=n—qb, a1 =q —qb,...,ap—1 = qe—1 — @b, ar = q.

Then

k-1 k k

Z aib’ = (¢ — g Db + qd* = qo+ > _ b’ =Y aib’ = g0 = n.

i=0 i=1 =1

For the uniqueness, assume that n = c¢g +c1b+- - - + ¢, b is another such

representation.
If h # k, for example h > k, then n > bF > bF*+1 But

n=ap+arb+--+apb® <(b-1)(1+b+ - +b°) =" -1 < phFL,

a contradiction.
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If h =k, then
ap+ arb+ -+ apb® =co+ c1b+ - + cpb®
and so blag — ¢g. On the other hand, |ag — cg| < b, hence ag = ¢y, Therefore
ar +ashb+ -+ apb" =i Feb+ bt

Repeating the procedure above, it follows that a3 = ¢1, as = co,. ..,
QA = Ck. O
Relation (1) is called the base b representation of n and is denoted by

n=ardk—1 .- .a,O(b)

The usual decimal representation corresponds to b = 10.
Examples. 1) 4567 =4-103+5-102+6-10+7 = 4567 (10)-
2) Let us write 10100112) in base 10. We have

1010011 () = 1-2°40-2°+1-2*40-2°+0-2°+1-24+1 = 64+16+2+41 = 83.

3) Let us write 1211 in base 3. As above, dividing by 3 successively,
the remainders give the digits of the base 3 representation, beginning with
the last. The first digit is the last nonzero quotient. We can arrange the

computations as follows:

1211 | 3
1209 403 | 3

2 402 134 3

Hence 1211 = T1222123,.

1.7.2 Divisibility criteria in the decimal system

We will prove some divisibility criteria for integers in decimal repre-
sentation. In this subsection, we will denote n = apan_1...ap with the

understanding that we operate in base 10.
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Criterion 1. a) The integer n = apan_1...ao0 is divisible by 3 if and
only if the sum s(n) of its digits is divisible by 3.

b) The integer n = apan—1.-.ag is divisible by 9 if and only if s(n) is
divisible by 9.

Proof. We have 10¥ =1 (mod 9) since 10 =1 (mod 9), hence

h
n= Zakloks(n) (mod 9).
k=0

Both conclusions follow. O

Criterion 2. The integer n = apap—_1---ag is divisible by 11 if and only
if ap — ay + - -+ + (=1)"ay, is divisible by 11.

Proof. We have 10¥ = (11 — 1)* = (—1)* (mod 11), hence

h h
n= Zaklok = Z(—l)kak (mod 11),
k=0 k=0
and the conclusion follows. O

Criterion 3. The integer n = apap—1--.ag is divisible by 7,11, or 13 if

and only if apan—1 - ..az — azaiag has this property.
Proof. We have

n = agarag + (1001 — V)apan,—1-.-as

=7-11- 13ahah_1 ...a3 — (ahah_1 ...a3 — agalao)

hence the desired conclusion. O
Criterion 4. The integer n = apanp—_1...ag 1s divisible by 27 or 37 if

and only if apan—1 - .- a3 + azaiag has this property.
Proof. We have

n = azarag + (999 + 1)apan—1-.-as

= 27-37apan_1...a3 + (@Gpanp_1.-. a3 + aza1a0)

and the conclusion follows. O
Examples. 1) The integer 123456789 is divisible by 9 because the sum
of its digits 1 + 2 + - - - + 9 = 45 has this property (Criterion 1b)).
2) The integer 20...04 is not a perfect square because the sum of its
N

2004
digits is 6, a multiple of 3 but not of 9, hence the integer itself has these

properties (Criteria 1la) and 1b)).
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3) All integers of the form abcdef where a+c+e =8 and b+d+ f = 19
are divisible by 99, because a +b+c+d+ f = 8 + 19, a multiple of 9, and
f—e+d—c+b—a=19 — 8, a multiple of 11 and the conclusion follows
from Criteria 1b) and 2.

4) For any nonzero digit a, the integer a1234567 is not divisible by 37.
Indeed, applying Criterion 4 we have a1234 + 567 = a1801 and al + 801 =
8a2 = 800+ 10a + 2 = 37 - 21 + 10a + 25. The integer 10a + 25 = 5(2a + 5)
is not divisible by 37 because 7 < 2a + 5 < 23.

Problem 1.7.1. Find all integers written as abed in decimal represen-

tation and dcba in base 7.
Solution. We have

abed(1g) = debagry < 999a+93b = 39c+342d < 333a+31b = 13c+114d,

hence b = ¢ (mod 3). As b,c € {0,1,2,3,4,5,6}, the possibilities are:

)yb=g¢
i) b=c+3;
i) b+ 3 = c.

In the first case we must have a = 2a’, d = 3d’, 37a’ +b = 19d’, d' = 2.
Hence a’ =1,a=2,d=6,b=1, ¢ =1, and the number abcd is 2116.

In the other cases a has to be odd. Considering a = 1, 3 or 5 we obtain
no solutions.

Problem 1.7.2. Prove that every integer k > 1 has a multiple less than
k* whose decimal expansion has at most four distinct digits.

(1996 German Mathematical Olympiad)

Solution. Let n be the integer such that 2"~ < k < 2". For n < 6 the
result is immediate, so assume n > 6.

Let S be the set of nonnegative integers less than 10™ whose decimal
digits are all 0 or 1. Since |S| = 2" > k, we can find two elements a < b of
S which are congruent modulo k, and b — a only has the digits 8, 9, 0, 1 in
its decimal representation. On the other hand,

b—a<1+10+4---+10"""' < 10" < 16" ! < k4,

hence b — a is the desired multiple.
Problem 1.7.3. A positive integer is written on a board. We repeatedly
erase its unit digit and add 5 times that digit to what remains. Starting

with 7998 can we ever end up at 199877
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(1998 Russian Mathematical Olympiad)

Solution. The answer is no. Let a,, be the n-th number written on the
board; let u,, be the unit digit and a,, = 10%,, + u,,. We have

ant1 = tn + du, = 50t, + Su,, = 5(10t, + u,) = 5a,  (mod 7).

Since a; = 719% = 0 # 19987 (mod 7), we can never obtain 19987 from
71998

Problem 1.7.4. Find all the three digit numbers abc such that the 6003-
digit number abcabe . . . abc is divisible by 91 (abc occurs 2001 times).

Solution. The number is equal to
%(1 +10°+10% 4+ ...+ 106000).

Since 91 is a divisor of 1001 = 1 + 102 and the sum S = 1+ 103 4 106 +
-+ - 4105990 has 2001 terms, it follows that 91 and (1+103) +10%(1+10%) +
co 4 101999(1 4 103) 4 10500 are relatively prime. Thus abc is divisible by
91. The numbers are

182, 273, 364, 455, 546, 637, 728, 819, 910.

Problem 1.7.5. Let n be an integer greater than 10 such that each of
its digits belongs to the set S = {1,3,7,9}. Prove that n has some prime
divisor greater than or equal to 11.

(1999 Iberoamerican Mathematical Olympiad)

Solution. Note that any product of any two numbers from {1,3,7,9}
taken modulo 20 is still in {1,3,7,9}. Therefore any finite product of such
numbers is still in this set. Specifically, any number of the form 3/7% is
congruent to 1, 3, 7, or 9 (mod 20).

Now if all the digits of n > 10 are in S, then its tens digit is odd and
we cannot have n = 1,3,7, or 9 (mod 20). Thus, n cannot be of the form
377%. Nor can n be divisible by 2 or 5 (otherwise, its last digit would not
be 1, 3, 7, or 9). Hence n must be divisible by some prime greater than or
equal to 11, as desired.

Problem 1.7.6. Find all natural numbers with the property that, when
the first digit is moved to the end, the resulting number is 3% times the

original one.

(1997 South African Mathematical Olympiad)
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Solution. Such numbers are those of the form
153846153846153846 . ..153846.

Obviously, since the number has the same number of digits when multi-
plied by 3.5, it must begin with either 1 or 2.

Case 1. The number is of the form 10V + 4, A < 10V, So 7/2x(10V 4+ A) =
104+ 1 — A = (7%10Y — 2)/13. The powers of 10 repeat with a period
of 6 mod 13 (10,9,12,3,4,1) so A will be an integer iff n =5 (mod 6). This
gives the family of solutions above.

Case 2. The number is of the form 210V + A4, A < 10V . Then, as before,
A = (14 % 10V — 4)/13. But as A < 107, this implies 10V < 4, which is
impossible.

Problem 1.7.7. Any positive integer m can be written uniquely in base
3 form as a string of 0’s, 1’s and 2’s (not beginning with a zero). For
example,

98 =81+ 9+2x 342 x 1= (10122)s.

Let ¢(m) denote the sum of the cubes of the digits of the base 8 form of
m; thus, for instance

c(98) =13 + 03 + 13 + 23 + 23 = 18.

Let n be any fized positive integer. Define the sequence {u,} as
up =n, and u, = c(ur—1) forr > 2.

Show that there is a positive integer r such that u, = 1,2, or 17.

(1999 United Kingdom Mathematical Olympiad)

Solution. If m has d > 5 digits then we have m > 39~! = (80 +
1)d=1/4 >80 % + 1 > 8d by Bernoulli’s inequality. Thus m > ¢(m).

If m > 32 has 4 digits in base 3, then ¢(m) < 23 +33+23+23 =32 < m.
On the other hand, if 27 < m < 32, then m starts with the digits 10 in
base 3 and c(m) < 13 + 0%+ 23 + 23 =17 < m.

Therefore 0 < ¢(m) < m for all m > 27. Hence, eventually, we have
us < 27. Because us has at most three digits, us41 can only equal 8, 16,
24, 1,9, 17, 2, 10, or 3. If it equals 1, 2, or 17 we are already done; if it

equals 3 or 9 then usyo = 1. Otherwise a simple check shows that w, will
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eventually equal 2:

8 = (22);

16 = (121)3 — 10 = (1015 — 2.
24:(220)3}_> (121)s = 10 = (1015 =

Problem 1.7.8. Do there exist n-digit numbers M and N such that all
of the digits of M are even, all of the digits of N are odd, each digit from
0 to 9 occurs exactly once among M and N, and N divides M ?

(1998 Russian Mathematical Olympiad)

Solution. The answer is no. We proceed by indirect proof. Suppose that
such M and N exist and let a = M/N. Then M =0+2+4+6+8 =2
(mod 9) and N =1434+5+7+9=7 (mod 9); they are both relatively
prime to 9. Now a = M/N =8 (mod 9) and so a > 8. But N > 13579 so
M = aN > 8(13579) > 99999, a contradiction.

Problem 1.7.9. Let k > 1 be an integer. Show that there are exactly
3+=1 positive integers n with the following properties:

(a) The decimal representation of n consists of exactly k digits.

(b) All digits of k are odd.

(¢) The number n is divisible by 5.

(d) The number m = n/5 has k (decimal) digits.

(1996 Austrian-Polish Mathematics Competition)

Solution. The multiplication in each place must produce an even num-
ber of carries, since these will be added to 5 in the next place and an odd
digit must result. Hence all of the digits of m must be 1, 5 or 9, and the first
digit must be 1, since m and n have the same number of decimal digits.
Hence there are 3*~! choices for m and hence for n.

Problem 1.7.10. Can the number obtained by writing the numbers from
1 ton in order (n > 1) be the same when read left-to-right and right-to-left?

(1996 Russian Mathematical Olympiad)

Solution. This is not possible. Suppose N = 123...321 is an m-digit
symmetric number, formed by writing the numbers from 1 to n in succes-
sion. Clearly m > 18. Also let A and B be the numbers formed from the
first and last k digits, respectively, of N, where k = |m/2]. If 107 is the
largest power of 10 dividing A, then n < 2-10P*!, that is, n has at most
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p + 2 digits. Moreover, A and B must contain the fragments

99...9100...01 and 100...099...9,
—_——— ——
p P p p
respectively, which is impossible.

Problem 1.7.11. Three boxes with at least one marble in each are given.
In a step we choose two of the boxes, doubling the number of marbles in
one of the boxes by taking the required number of marbles from the other
boz. Is it always possible to empty one of the boxes after a finite number of

steps?
(1999 Slovenian Mathematical Olympiad)

Solution. Without loss of generality suppose that the number of marbles
in the boxes are a, b, and ¢ with a < b < ¢. Write b = qa+r where 0 <71 < a
and ¢ > 1. Then express ¢ in binary:

q=mo+2my + -+ 2Fmy,

where each m; € {0,1} and my, = 1. Now for each i = 0,1,...,k, add
2tq marbles to the first box: if m; = 1 take these marbles from the second
box; otherwise take them from this third box. In this way we take at most
(2 —1)a < ga < b < ¢ marbles from the third box and exactly ga marbles
from the second box altogether.

In the second box there are now r < a marbles left. Thus the box with
the least number of marbles now contains less than a marbles. Then by
repeating the described procedure, we will eventually empty one of the

boxes.

Proposed problems

Problem 1.7.12. The natural number A has the following property: the
sum of the integers from 1 to A, inclusive, has decimal expansion equal to
that of A followed by three digits. Find A.

(1999 Russian Mathematical Olympiad)

Problem 1.7.13. A positive integer is said to be balanced if the number
of its decimal digits equals the number of its distinct prime factors. For
instance, 15 is balanced, while 49 is not. Prove that there are only finitely

many balanced numbers.
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(1999 Italian Mathematical Olympiad)

Problem 1.7.14. Let p > 5 be a prime and choose k € {0,...,p — 1}.
Find the maximum length of an arithmetic progression, none of whose
elements contain the digit k¥ when written in base p.

(1997 Romanian Mathematical Olympiad)

Problem 1.7.15. How many 10-digit numbers divisible by 66667 are
there whose decimal representation contains only the digits 3, 4, 5, and 67

(1999 St. Petersburg City Mathematical Olympiad)

Problem 1.7.16. Call positive integers similar if they are written using
the same set of digits. For example, for the set 1, 1, 2, the similar numbers
are 112, 121 and 211. Prove that there exist 3 similar 1995-digit numbers
containing no zeros, such that the sum of two them equals the third.

(1995 Russian Mathematical Olympiad)
Problem 1.7.17. Let k and n be positive integers such that
(n+2)"*2 (n+4)"™, (n +6)"*5 ... (n + 2k)"+2F
end in the same digit in decimal representation. At most how large is k7
(1995 Hungarian Mathematical Olympiad)

Problem 1.7.18. Let

1996
H(l + nzd y=1 + a1z + asz® + -+ apatm,
n=1
where a1, a2, ..., a, are nonzero and k1 < ky < --- < ky,, Find a1996.

(1996 Turkish Mathematical Olympiad)

Problem 1.7.19. For any positive integer k, let f(k) be the number of
element in the set {k+ 1,k + 2,...,2k} whose base 2 representation has
precisely three 1s.

a) Prove that, for each positive integer m, there exists at least one posi-
tive integer k, such that f(k) = m.

b) Determine all positive integers m for which there exists exactly one k
with f(k) = m.
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(35t IMO)

Problem 1.7.20. For each positive integer n, let S(n) be the sum of
digits in the decimal representation of n. Any positive integer obtained
by removing several (at least one) digits from the right-hand end of the
decimal representation of n is called a stump of n. Let T'(n) be the sum of
all stumps of n. Prove that n = S(n) + 97'(n).

(2001 Asian Pacific Mathematical Olympiad)

Problem 1.7.21. Let p be a prime number and m be a positive inte-
ger. Show that there exists a positive integer n such that there exist m

consecutive zeroes in the decimal representation of p™.
(2001 Japanese Mathematical Olympiad)

Problem 1.7.22. Knowing 2%° is an 9-digit number whose digits are
distinct, without computing the actual number determine which of the ten
digits is missing. Justify your answer.

Problem 1.7.23. It is well known that the divisibility tests for division
by 3 and 9 do not depend on the order of the decimal digits. Prove that 3
and 9 are the only positive integers with this property. More exactly, if an
integer d > 1 has the property that d|n implies d|n1, where n is obtained
from n through an arbitrary permutation of its digits, then d = 3 or d = 9.
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2

Powers of Integers

An integer n is a perfect square if n = m? for some integer m. Taking into
account the prime factorization, if m = p$* ... p(*, then n = pi™* .. .piak.
That is, n is a perfect square if and only if all exponents in its prime
factorization are even.

An integer n is a perfect power if n = m® for some integers m and s,
s > 2. Similarly, n is an s-th perfect power if and only if all exponents in
its prime factorization are divisible by s.

We say that the integer n is squarefree if for any prime divisor p, p? does
not divide n. Similarly, we can define the s-th power-free integers.

These preliminary considerations seem trivial but as you will see shortly

they have significant rich applications in solving various problems.

2.1 Perfect squares

Problem 2.1.1. Find all nonnegative integers n such that there are

integers a and b with the property:

n?=a+b and n® = a® + v

(2004 Romanian Mathematical Olympiad)
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Solution. From the inequality 2(a? + b%) > (a + b)? we get 2n3 > n?,
that is n < 2. Thus:

- for n = 0, we choose a = b =0,

- forn =1, we take a =1, b = 0 and

- for n = 2, we may take a = b = 2.

Problem 2.1.2. Find all integers n such that n—>50 and n+ 50 are both
perfect squares.

Solution. Let n — 50 = a2 and n + 50 = b2. Then b% — a? = 100, so
(b—a)(b+a)=22-52 Because b—a and b+ a are distinct and of the same
parity, the only possibility is b —a = 2 and b+ a = 50, yielding b = 26 and
a = 24. Hence there is only one n with this property, namely n = 626.

Problem 2.1.3. Let n > 3 be a positive integer. Show that it is possible to
eliminate at most two numbers among the elements of the set {1,2,...,n}

such that the sum of remaining numbers is a perfect square.

(2003 Romanian Mathematical Olympiad)

1 1
Solution. Let m = \‘ @J From m? < @ < (m+1)* we
obtain
1
%—mQ <(m+1)2—=m?=2m+1.

Therefore, we have:

1
%—m2§2m§\/2n2+2n§2n—1.

Since, any number k, k < 2n — 1 can be obtained by adding at most two
numbers from {1,2,...,n}, we obtain the result.

Problem 2.1.4. Let k be a positive integer and a = 3k? + 3k + 1.

(i) Show that 2a and a® are sums of three perfect squares.

(ii) Show that if a is a divisor of a positive integer b and b is a sum of

three perfect squares then any power b™ is a sum of three perfect squares.
(2003 Romanian Mathematical Olympiad)

Solution. (i) 2a = 6k%+6k+2 = (2k+1)%2+ (k+1)?>+k? and a® = 9k +
19k3+15k2+6k+1 = (k* +k)*+ (2k? +3k+1)2+k*(2k+1) = a? + a3+ a3.
(ii) Let b = ca. Then b = b% + b2 + b2 and b2 = c%a? = ?(a? + a2 + a2).
To end the proof, we proceed as follows: for n = 2p 4+ 1 we have b?PT1 =
(bP)%(b3 + b2 + b3) and for n = 2p+2, b™ = (bP)?b? = (bP)%c2(a? + a3 + a3).
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Problem 2.1.5. a) Let k be an integer number. Prove that the number:
(2k +1)% — (2k — 1)3

s the sum of three squares.
b) Let n be a positive number. Prove that the number (2n + 1)3 — 2 can

be represented as the sum of 3n — 1 squares greater than 1.
(2000 Romanian Mathematical Olympiad)

Solution. a) It is easy to check that
(2k+1)% — (2k — 1) = (4k)?> + 2k + 1)2 + (2k — 1)2.
b) Observe that
2n+1P—-1=2n+1*-2n—-1*+(2n—1)* - (2n—3)3+..- +3% - 13

Each of the n differences in the right hand side can be written as a sum
of three squares greater than 1, except for the last one:

3 —1° =42 +32+ 17
It follows that
(2n+1)° =2 =3+ 4+ [(4k)* + (2k +1)* + (2k — 1)?]
k=2

as desired.
Problem 2.1.6. Prove that for any positive integer n the number

(17 +12v2)" — (17— 12v2)"
4v2

s an integer but not a perfect square.
Solution. Note that 174+12/2 = (\/5 + 1)4 and 17—12+/2 = (\/5 — 1)4,
SO

(17+12v2)" - (17-12v2)"  (v2+1)" - (v2-1)™"

42 42
(VZ+1)"+ (V-1 (vVa+1)" - (va-1)”

2 24/2
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Define
(\/§+1)2n+(\/§_1)2n - B_(ﬁ+l)2n_(\/§_l)2n
2 B 2V/2

Using the binomial expansion formula we obtain positive integers z and
y such that

A:

(\/§+1>2n:x+y\/§, (ﬁ—l)Qn:x—y\/i

Then ) )
. (V2+1)" + (V2-1) ":A
2

and
_(VE)T - (VBT
Yy= 9v32
and so AB is as integer, as claimed.
Observe that

=B

A2_2_B2:(A+\/§B)(A_\/§B):(\/§+1)2n(\/§_1)2n:1

so A and B are relatively prime. It is sufficient to prove that at least one
of them is not a perfect square.
We have
2 2
V2+1)"+ (v2-1)T"

2

and

T A o)
2

Since only one of the numbers

(V2+1)"+(v2-1)"  (vV2+1)"-(v2-1)"
V2 ’ V2

is an integer — depending on the parity of n — from the relations (1) and

(2) we derive that A is not a square. This completes the proof.

Problem 2.1.7. The integers a and b have the property that for every
nonnegative integer n, the number 2™a + b is a perfect square. Show that
a=0.
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(2001 Polish Mathematical Olympiad)

Solution. If @ # 0 and b = 0, then at least one of 2'a + b and 22a + b is
not a perfect square, a contradiction.

If a # 0 and b # 0, then each (z,,y,) = (2v/2"%a + b, V2" 2a + b) satis-
fies

(xn + yn)(xn - yn) = 3b.

Hence, x + n + y,|3b for each n. But thus is impossible because 3b # 0
but |z, + yn| > |3b| for large enough n.

Therefore, a = 0.

Remark. We invite the courageous reader to prove that if f € Z[X] is a
polynomial and f(2") is a perfect square for all n, then there is g € Z[X]
such that f = g2.

Problem 2.1.8. Prove that the number

11...1122...225
—_——— ——
1997 1998

is a perfect square.

Solution.

N=11...11-10"° 4+22...22.10+5
N—_—— N——
1997 1998

1 2
= §(101997 —1)-10"999 4 §(101998 —1)-10+5

1 1 2
= §(103996 +2-5-10"998 4 25) = {3(101998 + 5)]

1997 2
100...005
=| ————| =33...335%
3 N——
1997

Problem 2.1.9. Find all the positive integers n, n > 1, such that n*+3"
is a perfect square.
Solution. Let m be a positive integer such that

m? =n?+ 3"

Since (m — n)(m 4+ n) = 3", there is k > 0 such that m —n = 3* and
m+n =3""% From m —n < m+n follows k < n —k, and so n — 2k > 1.
If n—2k = 1, then 2n = (m+n)—(m—n) = 3" F-3F =3~ (3n=2k _1) =
3F3Y —1) = 2-3% son = 3F = 2k + 1. We have 3™ = (1 +2)™ =
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14+2m+22 <T;> +--- > 2m+1, therefore £ = 0 or kK = 1 and consequently
n=1orn=3.

If n—2k > 1, then n — 2k > 2 and &k < n — k — 2. It follows that
38 < 377%=2 and consequently

om = 3n—k _ 3k 2 3n—k _ 3n—k—2 — 3n—k—2(32 _ 1) =8. 3n—k—2
>8[1+42(n—k—2)] = 16n — 16k — 24,

which implies 8k 4 12 > Tn.

On the other hand, n > 2k + 2, hence 7n > 14k + 14, contradiction.

In conclusion, the only possible values for n are 1 and 3.

Problem 2.1.10. Find the number of five-digit perfect squares having
the last two digits equal.

Solution. Suppose n = abedd is a perfect square. Then n = 100abc +
11d = M4 + 3d, and since all the squares have the form M4 or M4 + 1
and d € {0,1,4,5,6,9}, as the last digit of a square, it follows that d = 0
or d=4.

If d = 0, then n = 100abc is a square if abe is a square.

Hence abc € {102,11%..., 312}, so there are 22 numbers.
- 211
If d = 4, then 100abc 4 44 = n = k? implies k = 2p and abc = L T

1) If p = 5z, then abc is not an integer, false.
2522 + 10z — 1 2+2(:c—1)
Lo To T 2y

2) If p = 5z + 1, then abc = 3

25
x € {11,16,21, 26,31}, so there are 5 solutions.

_ 202 —
3) If p = 5z + 2, then abc = 22 + Or = 7 ¢ N, false.
— 30z — 2
4) If p = 52 + 3, then abc = 22 + e ¢ N, false.
8z +1

5) If p = 5 + 4 then abc = 22 + , hence z = M543 =
x € {13,18,23,28}, so there are 4 solutions.
Finally, there are 22 4+ 5 + 4 = 31 squares.
Problem 2.1.11. The last four digits of a perfect square are equal. Prove

they are all zero.
(2002 Romanian Team Selection Test for JBMO)

Solution. Denote by k? the perfect square and by a the digit that ap-
pears in the last four position. It easily follows that a is one of the numbers
0,1,4,5,6,9. Thus k> =a - 1111 (mod 16).

1) If a = 0, we are done.
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2) Suppose that a € {1,5,9}. Since k2 = 0 (mod 8), k* = 1 (mod 8)
or k2 = 4 (mod 8) and 1111 = 7 (mod 8), we obtain 1111 = 7 (mod 8),
5-1111 = 3 (mod 8) and 9 - 1111 = 7 (mod 8). Thus the congruence
k* =a-1111 (mod 16) cannot hold.

3) Suppose a € {4,6}. As 1111 = 7 (mod 16), 4 - 1111 = 12 (mod 16)
and 6 -1111 = 10 (mod 16), we conclude that in this case the congruence
k? =a-1111 (mod 16) cannot hold. Thus a = 0.

Problem 2.1.12. Let 1 < ny < ng < - < ni < ... be a sequence of
integers such that no two are consecutive. Prove that for all positive integers
m between ny +no + -+ + Ny, and ng + ng + - -+ + N1 there is a perfect
square.

Solution. It is easy to prove that between numbers a > b > 0 such that
va—+/b > 1 there is a perfect square - take for example ([v/b] + 1)2.

It suffices to prove that

Vit g =Vt > 1, m> 1

This is equivalent to

ny+ g > (L4 Vg F g+ -+ nm)?

and then

Nmt1 > 14+2vVn1 +no+ - +npy, m>1.

We induct on m. For m = 1 we have to prove that ny > 1+ 2\/n1.
Indeed, ng > n1 +2 =1+ (1 +ny1) > 1+ 2,/n7. Assume that the claim
holds for some m > 1. Then

nm+1_1> Vg4t ng,
s0 (i1 —1)%2 > 4(ny + -+ + ny,) hence
(M1 + 1)2 >4(ny 4+ 1)

This implies
N1 > 2«/7?,1 + -+ Nm+1,

and since N2 — Npy1 > 2, it follows that

N2 > 14+ 24/n1 + -+ Nyg1,

as desired.
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Problem 2.1.13. Find all the integers x,y,z so that 47 4+ 4Y 4+ 4% is a
square.

Solution. It is clear that there are no solutions with x < 0. Without
loss of generality assume that ¢ < y < z and let 4% 4+ 4Y + 4% = 2. Then
22%(1 4 4¥=% 4+ 4*=%) = 2. We have two situations.

Case 1. 1 +4Y7% + 47 is odd, i.e. 1 +4Y7% + 4% = (2a + 1)%. It
follows

gyl g el — (g 1)

and then
4y_z_1(1 +477Y) =a(a+1).

We consider two cases.

1) The number a is even. Then a+1 is odd, so 4Y=*~! = g and 14+4*7Y =
a + 1. It follows that 4¥=>71 = 4*7Y hence y —x — 1 = z — y. Thus
z=2y—x—1and

4% +4y _|_4z — 4% +4y _|_42y—z—1 — (2z + 22y—z—1)2.

2) The number a is odd. Then a+1 is even, so a = 4*~Y+1, a+1 = 4¥y—*~!
and 4v=*~1 — 457Y = 2. Tt follows that 22¥—27—3 = 222=2y—1 . 1 which is
impossible since 2z — 2y — 1 # 0.

Case 2. 1+4Y~% + 4777 is even, thus y = x or z = z. Anyway, we must

have y = x and then 244777 is a square, impossible since it is = 2 (mod 4)
or =3 (mod 4).

Proposed problems

Problem 2.1.14. Let z,y, z be positive integers such that

Let h be the greatest common divisor of z,y, z. Prove that hxyz and
h(y — x) are perfect squares.

(1998 United Kingdom Mathematical Olympiad)

Problem 2.1.15. Let b an integer greater than 5. For each positive

integer n, consider the number

Zn=11...122...25,
S——

n—1 n
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written in base b. Prove that the following condition holds if and only if
b = 10: There exists a positive integer M such that for every integer n
greater than M, the number z,, is a perfect square.

(44th IMO Shortlist)

Problem 2.1.16. Do there exist three natural numbers greater than 1,
such that the square of each, minus one, is divisible by each of the others?

(1996 Russian Mathematical Olympiad)

Problem 2.1.17. (a) Find the first positive integer whose square ends
in three 4’s.

(b) Find all positive integers whose squares end in three 4’s.

(¢) Show that no perfect square ends with four 4’s.

(1995 United Kingdom Mathematical Olympiad)

Problem 2.1.18. Let m,n be a natural numbers and m + i = aib? for
1 =1,2,...,n, where a; and b; are natural numbers and a; is squarefree.
Find all values of n for which there exists m such that a1 +as+- - -+a, = 12.

(1997 Bulgarian Mathematical Olympiad)

Problem 2.1.19. For each positive integer n, denote by s(n) the greatest
integer such that for all positive integer k < s(n), n? can be expressed as
a sum of squares of k positive integers.

(a) Prove that s(n) < n? — 14 for all n > 4.

(b) Find a number n such that s(n) = n? — 14.

(¢) Prove that there exist infinitely many positive integers n such that

s(n) =n? — 14.
(3374 IMO)

Problem 2.1.20. Let A be the set of positive integers representable in
the form a? + 2b? for integers a,b with b # 0. Show that if p? € A for a
prime p, then p € A.

(1997 Romanian IMO Team Selection Test)

Problem 2.1.21. Is it possible to find 100 positive integers not exceeding
25000 such that all pairwise sums of them are different?
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(4274 IMO Shortlist)

Problem 2.1.22. Do there exist 10 distinct integers, the sum of any 9
of which is a perfect square?

(1999 Russian Mathematical Olympiad)

Problem 2.1.23. Let n be a positive integer such that n is a divisor of
the sum

n—1
i=1
Prove that n is square-free.
(1995 Indian Mathematical Olympiad)

Problem 2.1.24. Let n, p be integers such that n > 1 and p is a prime.
If n|(p — 1) and p|(n® — 1), show that 4p — 3 is a perfect square.

(2002 Czech-Polish-Slovak Mathematical Competition)

Problem 2.1.25. Show that for any positive integer n > 10000, there
exists a positive integer m that is a sum of two squares and such that
0<m—n<3¥n.

(Russian Mathematical Olympiad)

Problem 2.1.26. Show that a positive integer m is a perfect square if

and only if for each positive integer n, at least one of the differences
(m+1)%=m,(m+2)?%—m,...,(m+n)?—m
is divisible by n.

(2002 Czech and Slovak Mathematical Olympiad)

2.2 Perfect cubes

Problem 2.2.1. Prove that if n is a perfect cube, then n?+43n+3 cannot
be a perfect cube.

Solution. Suppose by way of contradiction that n? + 3n + 3 is a cube.
Hence n(n? + 3n + 3) is a cube. Note that

n(n®>+3n+3)=n+3n>+3n=(n+1)>-1



2.2. PERFECT CUBES 71

and since (n + 1)® — 1 is not a cube, we obtain a contradiction.
Problem 2.2.2. Let m be a given positive integer. Find a positive integer
n such that m +n + 1 is a perfect square and mn + 1 is a perfect cube.
Solution. Choosing n = m? + 3m + 3, we have

m4n+1=m?+4m+4=(m+2)>?

and
mn+1=m?+3m?>+3m+1=(m+1)>

Problem 2.2.3. Which are there more of among the natural numbers
from 1 to 1000000, inclusive: numbers that can be represented as the sum

of a perfect square and a (positive) perfect cube, or numbers that cannot
be?

(1996 Russian Mathematical Olympiad)

Solution. There are more numbers not of this form. Let n = k2 + m3,
where k,m,n € N and n < 1000000. Clearly £ < 1000 and m < 100.
Therefore there cannot be more numbers in the desired form than the
100000 pairs (k,m).

Problem 2.2.4. Show that no integer of the form Tyzy in base 10 can
be the cube of an integer. Also find the smallest base b > 1 in which there

s a perfect cube of the form xyxy.
(1998 Irish Mathematical Olympiad)

Solution. If the 4-digit number Tyzy = 101 X Ty is a cube, then 101|Zy,
which is a contradiction.

Convert zyzy = 101 x Ty from base b to base 10. We find Tyzy =
(b2 4+ 1) x (bx +y) with 2,y < b and b*> + 1 > bz + y. Thus for Zyzy to be
a cube, b? + 1 must be divisible by a perfect square. We can check easily
that b = 7 is the smallest such number, with b2 + 1 = 50. The smallest
cube divisible by 50 is 1000 which is 2626 is base 7.

Proposed problems

Problem 2.2.5. Find all the positive perfect cubes that are not divisible
by 10 so that the number obtained by erasing the last three digits is also a
perfect cube.

Problem 2.2.6. Find all positive integers n less than 1999 such that n?

is equal to the cube of the sum of n’s digits.
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(1999 Iberoamerican Mathematical Olympiad)
Problem 2.2.7. Prove that for any non-negative integer n the number
A=2"4+3"4+5"+6"

is not a perfect cube.
Problem 2.2.8. Prove that any integer is a sum of five cubes.
Problem 2.2.9. Show that any rational number can be written as a sum

of three cubes.

2.3 k'™ powers of integers, k > 4

Problem 2.3.1. Given 81 natural numbers whose prime divisors belong
to the set {2,3,5}, prove there exist 4 numbers whose product is the fourth
power of an integer.

(1996 Greek Mathematical Olympiad)

Solution. It suffices to take 25 such numbers. To each number, associate
the triple (z2,x3,25) recording the parity of the exponents of 2, 3, and 5
is its prime factorization. Two numbers have the same triple if and only
if their product is a perfect square. As long as there are 9 numbers left,
we can select two whose product is a square; in so doing, we obtain 9 such
pairs. Repeating the process with the square roots of the products of the
pairs, we obtain four numbers whose product is a fourth power.

Problem 2.3.2. Find all collections of 100 positive integers such that
the sum of the fourth powers of every four of the integers is divisible by the

product of the four numbers.
(1997 St. Petersburg City Mathematical Olympiad)

Solution. Such sets must be n,n,...,nor 3n,n,n,...,n for some integer
n. Without loss of generality, we assume the numbers do not have a common
factor. If u, v, w, z,y are five of the numbers, then wvw divides u* 4 v* +

w* + 2% and u* + v* + w* + y%, and so divides z* — y*. Likewise, v* =

wt* = 2* (mod u), and from above, 3v* = 0 (mod u). If u has a prime
divisor not equal to 3, we conclude that every other integer is divisible by
the same prime, contrary to assumption. Likewise, if u is divisible by 9,
then every other integer is divisible by 3. Thus all of the numbers equal 1
or 3. Moreover, if one number is 3, the others are all congruent modulo 3,

so are all 3 (contrary to assumption) or 1. This completes the proof.
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Problem 2.3.3. Let M be a set of 1985 distinct positive integers, none
of which has a prime divisor greater than 26. Prove that M contains at
least one subset of four distinct elements whose product is the fourth power

of an integer.
(26t" TMO)

Solution. There are nine prime numbers less than 26: p; =2, py =3,.. .,
9

po = 23. Any element z of M has a representation z = I_Ip;-“7 a; > 0. 1If
i=1
9 9 '

z,y € M and y = Hpi-”, the product zy = Hp?i+bi is a perfect square

if and only if a; —&-ijE 0 (mod 2). ]E)quivaleélzlly7 a; = b; (mod 2) for all
i=1,2,...,9. Because there are 2° = 512 elements in (Z/2Z)? any subset
of M having at least 513 elements contains two elements z,y such that xy
is a perfect square. Starting from M and eliminating such pairs one finds
%(1985 —513) = 736 > 513 distinct two-element subsets of M having a
square as the product of elements. Reasoning as above, we find among these
squares at least one pair (in fact many pairs) whose product is a fourth
power.

Problem 2.3.4. Let A be a subset of {0,1,...,1997} containing more
than 1000 elements. Prove that A contains either a power of 2, or two

distinct integers whose sum is a power of 2.
(1997 Irish Mathematical Olympiad)

Solution. Suppose A did not verify the conclusion. Then A would con-
tain at most half of the integers from 51 to 1997, since they can be divided
into pairs whose sum is 2048 (with 1024 left over); likewise, A contains at
most half of the integers from 14 to 50, at most half of the integers from 3
to 13, and possibly 0, for a total of

973 +18+5+1 =997

integers.
Problem 2.3.5. Show that in the arithmetic progression with first term

1 and ratio 729, there are infinitely many powers of 10.

(1996 Russian Mathematical Olympiad)
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Solution. We will show that for all natural numbers n, 108! — 1 is
divisible by 729. In fact,

103" — 1= (10%H)" —1" = (10%" — 1) - 4,
and

108 —1=9...9
——
81
=9...9...10...0110...01...10...01
=91...1...10...0110...01...10...01.

The second and third factors are composed of 9 units, so the sum of their
digits is divisible by 9, that is, each is a multiple of 9. Hence 103! — 1 is
divisible by 9% = 729, as is 108! — 1 for any n.

Remark. An alternative solution uses Euler’s Theorem (see Section 7.2).
We have 109(?%) = 1 (mod 7)29, thus 10"#("29) is in this progression for

any positive integer n.

Proposed problems

Problem 2.3.6. Let p be a prime number and a,n positive integers.
Prove that if
2P 437 =a",
then n = 1.
(1996 Irish Mathematical Olympiad)

Problem 2.3.7. Let z,y, p,n, k be natural numbers such that

xn+yn:pk

Prove that if n > 1 is odd, and p is an odd prime, then n is a power of p.
(1996 Russian Mathematical Olympiad)

Problem 2.3.8. Prove that a product of three consecutive integers can-
not be a power of an integer.
Problem 2.3.9. Show that there exists an infinite set A of positive

integers such that for any finite nonempty subset B C A, Z x is not a

zeB
perfect power.
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(Kvant)

Problem 2.3.10. Prove that there is no infinite arithmetic progression

consisting only of powers > 2.
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3

Floor Function and Fractional Part

3.1 General problems

For a real number x there is a unique integer n such that n <z <n+1.
We say that n is the greatest integer less than or equal to x or the floor of
z. We denote n = |[z|. The difference = — |x] is called the fractional part
of z and is denoted by {z}.

The integer |x] 4 1 is called the ceiling of x and is denoted by [z].

Examples. 1) [2.1] =2, {2.1} = .1, and [2.1] = 3.

2) [-3.9] = —4, {~3.9} = .1, and [-3.9] = —3.

The following properties are useful:

1) If @ and b are integers, b > 0, and ¢ is the quotient when a is divided
by b, then ¢ = {%J

2) For any real number z and any integer n, |z + n| = |[z] + n and
[z 4+ n] = [z] +n.

3) For any positive real number x and any positive integer n the number

x
of positive multiples of n not exceeding x is {—J
n

4) For any real number x and any positive integer n, {m = {EJ .
n n

We will prove the last two properties. For 3) consider all multiples

1-n, 2-n,....k-n,
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where k- n < z < (k+ 1)n. That is k < % < k + 1 and the conclusion

follows. For 4) denote |2] = m and {2} = «. From the Division Algorithm

and property 1) above it follows that m = n {EJ +7, where 0 <r <n-—1.
n

We obtain 0 <r+4+a <n—1+ «a < n, that is LH—OZJ =0 and
n

{EJ _ Lm—&-aJ _ H@J‘FT—FQJ _ {@J%_V—&-aJ _ {@J _ {mJ
n n n n n n n n

Problem 3.1.1. Find all positive integers n such that | 3/111] divides
111.

Solution. The positive divisors of 111 are 1, 3, 37, 111. So we have the
following cases:

1) [¥/111] =1 or 1 <111 < 2", hence n > 7.

2) | ¥/111] =3, 0r 3" <111 < 4", so n = 4.

3) | ¥/111) = 37, or 37" < 111 < 38", impossible.

4) | ¥/111) = 111, or 111" < 111 < 112", and so n = 1.

Therefore n =1, n=4o0rn > 1.

Problem 3.1.2. Solve in R the equation:

lz|z]] =1.
Solution. By definition,
lz|z]) =1
implies
1<z|z] <2.

We consider the following cases:

a) ¢ € (—oo, —1). Then |z] < —2 and z|z| > 2, a contradiction.

b)z=-1 = |z] =—-1. Then z|z] = (-1)-(-1) =1 and |z|z]] =1,
so x = —1 is a solution.

¢) z € (—1,0). We have |z] = —1 and z|z] = —x < 1, false.

d) If z € [0,1), then |z] = 0 and x|x] = 0 < 1, so we have no solution
in this case.

e) For z € [1,2) we obtain |x] =1 and x|x] = |x] = 1, as needed.

f) Finally, for > 2 we have [z| > 2 and z|z| = 2z > 4 - 2, a contradic-
tion with (1).

Consequently, z € {—1} U[1,2).
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Problem 3.1.3. Prove that for any integer n one can find integers a
and b such that

n=lav2| +|bV3].

Solution. For any integer n, one can find an integer b so that
V2+bV3 -2 <n<V2+bV3.

We consider the cases:

1) If n = |V2] + |bV/3], we are done.

2) If n = [V2] + |bv3] + 1, then n = [2v/2] + |bV/3].

3) If n = |v2] + [bV3] — 1, then n = [0v2] + [bV/3].

Problem 3.1.4. Find all real numbers x > 1, such that {‘/Lx—" 8 an

integer for all positive integers n, n > 2.
(2004 Romanian Regional Mathematical Contest)

Solution. Put {‘/W = ap. Then [2"] = o and o < z" < al + 1.
Taking roots, one obtains a, < z < {/a? + 1. This shows that || = ay.

We will show that all positive integers z, x > 2, satisfy the condition.
Assume, by way of contradiction, that there is a solution x which is not a
nonnegative integer. Put x =a+a,a€Z,a> 1,0 < a < 1.

It follows that a™ < (a + a)™ < a™ + 1, and therefore,

n 1
1<(142) <14+ <2
a a™
On the other hand, by Bernoulli inequality,
(1+g) >14n >2,
a a

for sufficiently large n, a contradiction.
Problem 3.1.5. Let r > 1 be a real number such that for all m,n such

that m divides n, |mr| divides |nr|. Prove that r is an integer.
(1997 Iberoamerican Mathematical Olympiad)

Solution. Fix the positive integer m and observe that |mr| divides
|k{mr}| for any positive integer k. If {mr} # 0 take a positive integer k
such that

1
<k<

2
{mr} — {mr}’
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2 1
e} > Tt + 1. Then [mr]|1, thus it is 1, which means
mr mr

m = 1. This shows that if m > 2, then {mr} = 0, thus mr € Z for any
integer m > 2 and clearly r € Z.
Problem 3.1.6. Find the number of different terms of the finite sequence

k2
{@J, where k =1,2,...,1997.

possible since

(1998 Balkan Mathematical Olympiad)

Solution. Note that

9982
1998

2
J:498<499: {999 J

1998

so we can compute the total number of distinct terms by considering
kE=1,...,998 and k£ = 999,...,1997 independently. Observe that for
k=1,...,997,
(k+1)?* kK 2k+1
1998 1998 1998
so for k =1,...,998, each of the numbers

12 9982
{—1998J =0,1,...,498 = LQQSJ

appears at least once in the sequence |k?/1998] for a total of 499 distinct
terms. For k =999, ...,1996, we have

<1,

(k+1)* K 2k+1
1998 1998~ 1998

> 1,

so the numbers |k2/1998] (k = 999, ...,1997) are all distinct, giving 1997 —
999+ 1 = 999 more terms. Thus the total number of distinct terms is 1498.

Problem 3.1.7. Determine the number of real solutions a of the equation
5]+ 5]+ (5] =
2 3 50

(1998 Canadian Mathematical Olympiad)

Solution. There are 30 solutions. Since |a/2], |a/3], and |a/5] are
integers, so is a. Now write a = 30p + ¢ for integers p and ¢, 0 < ¢ < 30.

2+ (2] 2] =
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o 3lp+ EJ + {%J + gJ —30p+q

q q q
= r=a-|3]-[5]- 5]

Thus, for each value of ¢, there is exactly one value of p (and one value
of a) satisfying the equation. Since ¢ can equal any of thirty values, there
are exactly 30 solutions, as claimed.

Problem 3.1.8. Let \ be the positive oot of the equation t>—1998t—1 =
0. Define the sequence xg,x1,... by setting

xo=1, xpi1 = zn|, n>0.
Find the remainder when x199s s divided by 1998.
(1998 Iberoamerican Mathematical Olympiad)

Solution. We have

1998 + /19982 + 4
2

=999 4+ /9992 + 1 < 1999,

21 = 1998, 7o = 19982, Since A2 — 1998\ — 1 = 0,

1998 < A =

A= 1998+§ and 2\ = 1998z + ;

for all real number z. Since x,, = |z,,—1A] and x,,_1 is an integer and A is
irrational, we have

T Ty +1
xn<xn_1/\<xn+lor7"<xn_1< ")\ .

Since A > 1998, |z, /] = ,—1 — 1. Therefore,
Tns1 = |2a)] = {1998% n %"J = 1998z, + Tn_1 — 1,

ie, Tpt1 = Tp—1 — 1 (mod 1998). Therefore by induction x1998 = xg —
999 = 1000 (mod 1998).

Problem 3.1.9. Let n be a positive integer. Prove that for any real
number x,

o) = )+ [ 2] [ 22

n
(Hermite! ).

1 Charles Hermite (1822-1901), French mathematician who did brilliant work in many

branches of mathematics.
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Solution. Let f(z) be the difference between the right-hand side and
the left-hand side of (1). Then

N e e e N U O]
N {J’#%J toet Pﬂ‘n—;lJ +lz+1] - [+ 1],

and since |z + k] = |z] + k for each integer k, it follows that

f <w+%> = f(x)

for all real x. Hence f is periodic with period 1/n. Thus it suffices to study
f(z) for 0 <z < 1/n. But f(z) = 0 for all these values, hence f(z) = 0 for
all real x, and the proof is complete.

Proposed problems

Problem 3.1.10. Let n be a positive integer. Find with proof a closed

formula for the sum:
n+1 n+2 n + 2k
R 2 R =
Problem 3.1.11. Compute the sum

x 15

0<i<j<n

(10" IMO)

where x is a real number.
Problem 3.1.12. Evaluate the difference between the numbers
2000

22991 3k 4 2000 3k — 2000
Z 3k+1 and Z 3k+1 .
k=0

Problem 3.1.13. a) Prove that there are infinitely many rational posi-

tive numbers x such that:
{2} + {2} = 0,99.
b) Prove that there are no rational numbers x > 0 such that:

{#?) + {2} = 1.
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(2004 Romanian Mathematical Olympiad)

Problem 3.1.14. Show that the fractional part of the number v/4n2 + n
is not greater than 0.25.

(2003 Romanian Mathematical Olympiad)

Problem 3.1.15. Prove that for every natural number n,

n2

n?—1
> (Vi) < T

k=1

(1999 Russian Mathematical Olympiad)

Problem 3.1.16. The rational numbers aq, ..., a, satisfy

n

Z{kal} < g

i=1

for any positive integer k.
(a) Prove that at least one of ay, ..., «, is an integer.
(b) Do there exist a1, ..., a, that satisfy

n
n
Z{kaz} S 57
i=1
such that no «; is an integer?

(2002 Belarus Mathematical Olympiad)

3.2 Floor function and integer points

The following results are helpful in proving many relations involving the
floor function.

Theorem 3.2.1. Let a, ¢ be nonnegative real numbers and let f : [a,b] —
[e,d] be a bijective increasing function.

Then

doUmI+ DY LR - n(Gy) = [b]ld] - a(a)ale), (1)
a<k<b c<k<d

where k is integer, n(Gy) is the number of points with nonnegative integer
coordinates on the graph of f and o : R — 7Z is defined by

|x] if reR\Z
az)=4¢ 0 if =0
z—1 if xzeZ\{0}
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Proof. For a bounded region M of the plane we denote by n(M) the
number of points with nonnegative integral coordinates in M.

Function f is increasing and bijective, hence continuous. Consider the

sets
My ={(z,y) ER*|a<z<b 0<y< f(x)},
My ={(z,y) eR’|c<y<d, 0<a< [y},
My ={(z,y) eR*[ 0 <z <b, 0<y <d},
My ={(z,y) R} 0<z<a, 0<y<c}
Then
n(Mi) = Y [f(k)], n(Ms)= " [fFH(R)],
a<k<b c<k<d
n(Ms) = [b]ld], n(Ms) = a(a)o(c).
We have
n(my) + n(Mz) — n(My N M) = n(M; U My),
hence

n(Mi) +n(Mz) = n(Gy) = n(Mz) — n(Ma),

and the conclusion follows. O
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Theorem 3.2.2. Let m,n, s be positive integers, m < n, Then

Bl 3, ] )

k=1 1<k< ms

Proof. We first prove the following lemma.

Lemma. The array

1-m 2-m s-m
R
. ged(m,n) - s | .
contains eractly | —————— | integers.

Proof of the lemma. Let d be the greatest common divisor of m and n.
Hence m = m1d and n = nid for some integers m; and n;.

The numbers in the array are

1-m; 2-m p-my

5 ge ey

ni ni ni

and, since m1,ny are relatively prime, there are {ﬁJ integers among them.
ni
B n
d  ged(m,n)
gers in the array.

Because ni; =

it follows that there are {MJ inte-

n

In order to prove the desired result, let us consider the function f :

[1,s] — [E @}, f(z) = ™% in Theorem 3.2.1. Using the lemma above
n’ n n

d :
we have n(Gy) = WJ and the conclusion follows. O

Remark. The special case s = n leads to an important result:

Sl ol L

k=1 k=1
Theorem 3.2.3. Let a, ¢ be nonnegative real numbers and let f : [a,b] —

[e,d] be a bijective decreasing function.
Then

SoUE = Y [ R = [blale) — [dlafa),
a<k<b c<k<d

where k is integer and « is the function defined in Theorem 3.2.1.
Proof. Function f is decreasing and bijective, hence continuous. Con-

sider the sets

le{(xay)€R2|a§$§b7 c<y< f(x)},
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No={(z,y) eR*|c<y<d a<z<f 'y}
Ny ={(z,y) eR*| a <z <b, 0<y<c},
Ny={(z,y) eR’|0<z<a, c<y<d}

Then
> (k)] = n(N1) + n(Ns),
a<k<b
> L H(K)] = n(N2) + n(Na),
c<k<d

n(N1) = n(Nz), and
n(Ns) = ([b] — a(a))a(c), n(Ns) = (ld] — afc))a(a)

It follows that

YoUEI= Y TR = n(Ns) = n(Ny) =

a<k<b c<k<d

= [b]a(c) - [d]a(a),
as desired. (]
Remark. Combining the result in Theorem 3.2.3 and the relation (3)
for the function f : [1,n] — [O,m - %}, flx) = —%x +m, m <mn, yields

after some computations:

Zn: V—mJ = %(mn—t—m—n—kgcd(m,n)). (4)

n
k=1
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From the above relation we obtain

n—1
ged(m,n) :QZ V%nJ +m —n—mn,

k=1
i.e. a 1998 Taiwanese Mathematical Olympiad problem.

From here we get

1
=y~ g(mn—m—n+gedim,n)) = 5 (n — ged(m, n)),
that is a 1995 Japanese Mathematical Olympiad problem.

Problem 3.2.1. Ezpress ZL\/EJ in terms of n and a = |\/n].
k=1

(1997 Korean Mathematical Olympiad)

Solution. We apply Theorem 3.2.1 for the function f : [1,n] — [1,/n],
f(z) = /x. Because n(Gy) = [/n], we have

Lv7)
ZL\/_JJFZL ] = [Vn] =n|vn],

k=1

hence

" ala+1)(2a+1)
k| = (n+1)a - ——27 12,
2 G

Problem 3.2.2. Compute

n(n+1)

zi:{wm}

1
Solution. Consider the function f : [1,n] — {1, %J,
x(x+1
)= 222
Function f is increasing and bijective. Note that n(Gy) = n and
fYz) = w Applying formula in Theorem 3.2.1 we obtain
2

n(n+1)

2 {_H\/H—%J . n?(n+ 1)

2 2 ’
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hence

n(n+1)

2 {—1+\/1+8k} ~n?(n+1) 1 —
1

k= k=1

n?(n+1) nn+1) nn+1)2n+1) n(n?+2)

5 thT T 12 3

Proposed problems

Problem 3.2.3. Prove that

for all integers n > 1.
Problem 3.2.4. Let 6 be a positive irrational number. Then, for any

positive integer m,

St 3 (5] = i

Problem 3.2.5. Let p and g be relatively prime positive integers and

let m be a real number such that 1 < m < p.

NIfs= {@J, then
p

STEIBE A

2) (Landau?) If p and q are odd, then

p—1 g—1

i {@J +§ {@J _ (p—1)4(q—1)_

k=1 p k=1 q

3.3  An useful result

The following theorem is also helpful in proving some relations involving
floor function.

2Edmond Georg Hermann Landau (1877-1838), German mathematician who gave
the the first systematic presentation of analytic number theory and wrote important

work on the theory of analytic functions of single variable.
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Theorem 3.3.1. Let p be an odd prime and let ¢ be an integer that is
not divisible by p. If f : 2% — R is a function such that:
k
) 1)
p
i) f(k)+ f(p—k) is an integer divisible by p, k =1,2,...,p— 1, then

is not an integer, k =1,2,...,p— 1;

p—1

LCHEE WO )

k=1

p—1

k=1

Proof. From ii) it follows that

qf (k) n qf(p—k)
p p

ez (2)

and from i) we obtain that %Ek) ¢ 7 and w gl k=1,...,p—1,

hence . {qf;k)}+{qf(z?p— k)} <9

But, from (2), {Qf;k) } + {Qf(pp_ k)} € Z, thus

{qf(k)}+{qf(pp—k)}:1, k=1,...,p—1.

p

Summing up and dividing by 2 yields

2{%]”(/6)} —el

It follows that

1 p—1

s - X || =23

k=1

b~}
|

ki
p

£
Il

1

and the conclusion follows. (]
Problem 3.3.1. Let p and q be two relatively prime integers. The fol-
lowing identity holds:

-1

bS]

{k%J = W (Gauss).

k=1
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Solution. The function f(x) = x satisfies both i) and ii) in Theorem

3.3.1, hence
-1
pz Wi _ae—1p p-1
1L P P2 2’

hence the desired relation follows.
Problem 3.3.2. Let p be an odd prime. Prove that

[ﬁ

VSJ P=2-Dp+1)

4
k=1

(2002 German Mathematical Olympiad)

Solution. The function f(z) = 2® also satisfies conditions i) and ii),

hence

—1

bS]

{kqu ¢ (P—1%* p-1_(»p-1)(p’¢—pq—2)
4 2 4 '

k=1

For ¢ = 1 the identity in our problem follows.

Proposed problems

Problem 3.3.3. Let p be an odd prime and let ¢ be an integer that is
not divisible by p. Shows that

|, wed]  -D@—1)
Z;V nka____?__f

Problem 3.3.4. Let p be an odd prime. Show that

Wk poi

p 2

i~
|

(mod p).

£
Il

1



4
Digits of Numbers

4.1 The last digits of a number

Let @,a1-.-ao be the decimal representation of the positive integer V.
The last digit of N is [(N) = ag and for k > 2, the last k digits of N are
Ix(N) = ax—1-.-ag. These simple concepts appear in numerous situations.

It is useful to point out the last digit of k™, where k =2,3,...,9:

6,n=0 (mod 4) 1,n=0 (mod 4)
2,n=1 4 =

12 = ,n (mod 4) e = 3,n=1 (mod 4)
4,n=2 (mod4) 9,n=2 (mod 4)
8,n=3 (mod4) 7,n=3 (mod4)

w ) 6,n=0 (mod 2) N o
l<4>—{4,n51 g+ 1) =5 167 =6

1,n=0 (mod 4) 6,n=0 (mod 4)
17" = 7,n=1 (mod 4) s = 8,n=1 (mod4)
9,n=2 (mod 4) 4,n=2 (mod 4)
3,n=3 (mod 4) 2,n=3 (mod 4)

1(9") = { l,nf (mod 2)
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It is clear that if {(N) = 0, then I,(N™) = 0...0 and if [(N) = 1, then

n times

I(N™) =1 for all n > 2.

Problem 4.1.1. What is the final digit of (... (((77)")7)...7).

There are 1001 7s in the formula.

Solution. The final digit of a (decimal) number is its remainder modulo
10. Now 72 =49 = —1 (mod 10). So 77 = (7?) - 7= —7 (mod 10), and

(7Y =(-71"=—-(7")=—(-7)=7 (mod 10).
Proceeding in this way, we see that ((77)")7 = 7 (mod 10), and in general
(..((TYH) ..y = %7 (mod 10),

where the sign is + if alltogether there is an odd number of 7s in the
formula, and — if there is an even number of 7s. Now, 1001 is odd. So the
final digit of the given formula is 7.

Problem 4.1.2. Prove that every positive integer has at least as many
(positive) divisors whose last decimal digit is 1 or 9 as divisors whose last
digit is 3 or 7.

(1997 St. Petersburg City Mathematical Olympiad)

Solution. Let di(m),ds(m),d7(m),dg(m) be the number of divisors of
m ending in 1, 3, 7, 9, respectively. We prove the claim by induction on
m; it holds obviously for m a prime power, and if m is composite, write
m = pq with p, ¢ coprime, and note that

d1 (m) — dg(m) — d7(m) + dg (m)
= (d1(p) — d3(p) — dz(p) + do(p))(d1(q) — d3(q) — dz(q) + dy(q)).

For instance,

dz(m) = di(p)ds(q) + d3(p)di(q) + d7(p)ds(q) + do(p)dr(q).

Problem 4.1.3. Find the least positive integer n with the following prop-
erties:

a) the last digit of its decimal representation is 6;

b) by deleting the last digit 6 and replacing it in front of the remaining

digits one obtains a number four times greater than the given number.

(4th IMO)
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Solution. Let n = 10¥ay, + 10¥Ya;_1 + - - - 4+ 10a1 + 6 be the required
number. Writing n under the form n = 10N + 6, where 10"~ < N < 10,
the condition b) becomes:

4(10N +6) =6-10* + N.

Thus, we obtain
39N =6-10% — 24,

and equivalently
13N = 2(10% — 4).

Thus, we obtain that 10* = 4 (mod 13).
It is more convenient to write:

(=3)*=4 (mod 13).

From the conditions of the problem it is required the least k& with this
property. We have:

(=3)>=9 (mod 13), (-3)®>=-27 (mod 13)= -1 (mod 13)
(—=3)° = (-3)*(-3)*=-9=4 (mod 13).
Then, k =5 is the least positive solution of the equation. Thus,
13N =2-99996 = N =15384 = n = 153846.

This number verifies b).

Proposed problems

Problem 4.1.4. In how may zeroes can the number 1™ + 2" 4 3™ 4 4"
end for n € N?

(1998 St. Petersburg City Mathematical Olympiad)

Problem 4.1.5. Find the last 5 digits of the number 598!,

Problem 4.1.6. Consider all pairs (a,b) of natural numbers such that
the product a®b’, written in base 10, ends with exactly 98 zeroes. Find the
pair (a,b) for which the product ab is smallest.

(1998 Austrian-Polish Mathematics Competition)
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4.2 The sum of the digits of a number

For a positive integer N = a,a,_1-..agp in decimal representation we
denote by S(N) the sum of its digits ag+- - -+ @, —1+ay,. Problems involving
the function S defined above appear frequently in various contexts. We

present a few basic properties.

N
1) S(N) _N—9kz21 {WJ
2) 9[S(N) = N;
3) (subadditivity): S(Ny + Na) < S(N1) + S(Na);
4) S(N1N3) < min(N1.S(N2), No(S(N1));
5) (submultiplicity): S(N1N2) < S(N1)S(N3).
Let us prove the last three properties. Using 1) and the inequality |z +
y| > x| + |y] we have

N1+ N
S(N1+ N3) = N1+N2—9Z{%J
k>1
Ny Ny
< _ = _Z
< Np+ Ny Q;QIO’“JjLLO’“D

= S(Ny) + S(Ny).

Because of the symmetry, in order to prove 4) it suffices to prove that
S(N1N3) < N1S(No).

The last inequality follows by applying the subadditivity property re-
peatedly. Indeed,

S(QNQ) = S(NQ -+ Ng) < S(NQ) + S(NQ) = QS(NQ)
and after N steps we obtain

S(N1N2) = S(NQ + No +"'+N2)

N times
< S(Na) + S(Na) + - -+ S(N2) = N1.S(No).

N times

For 5) observe that

h
S(N1Ny) = (leb 10) (ZNlb 102> > S(N1b;107)
=0

h

h
=37 5(Nabi)S(10°) = Z S(N1b;) < Z S(N1)

=0 i=0
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h
= S(N1) Y bi = S(N1)S(Na).

i=0
Examples. 1) In the decimal expansion of N, the digits occur in increas-
ing order. What is S(9N)?

(1999 Russian Mathematical Olympiad)
Solution. Write N = axax_1 - - - ag- By performing the subtraction

ar ag_1 ... a1 ag O

— ag az a1 Qo

we find that the digits of 9N = 10N — N are
ak, Gg—1, —0k,...,0A1 — 2,00 — A1 — ]-7 10 — ag

These digits sum to 10 — 1 = 9.
2) Find a positive integer N such that S(N) = 1996S(3N).

(1996 Irish Mathematical Olympiad)

Solution. Consider N =1 33...3 5. Then 3N =4 00...0 5 and
N—— N~——
5986 times 5986 times

S(N)=3-5986+1+45=17964 = 1996 - 9 = 1996S(N).

Problem 4.2.1. Determine all possible values of the sum of the digits
of a perfect square.

(1995 Iberoamerican Olympiad)

Solution. The sum of the digits of a number is congruent to the number
modulo 9, and so for a perfect square this must be congruent to 0, 1, 4 or
7. We show that all such numbers occur. The cases n = 1 and n = 4 are
trivial, so assume n > 4.

If n = 9m, then n is the sum of the digits of (10™—1)% = 10™(10™—2)+1,
which looks like 9...980...01. If n = 9m + 1, consider (10™ — 2)? =
10™(10™ — 4) + 4, which looks like 9...960...04. If n = 9m + 4, consider
(10™ — 3)2 = 10™(10™ — 6) + 9, which looks like 9...94...09. Finally, if
n = 9m — 2, consider (10™ — 5)2 = 10™(10™ — 10) + 25, which looks like
9...900...025.

Problem 4.2.2. Find the number of positive 6 digit integers such that
the sum of their digits is 9, and four of its digits are 1,0,0,4.
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(2004 Romanian Mathematical Olympiad)

Solution. The pair of missing digits must be 1, 2 or 0, 3.

In the first case the first digit can be 1, 2 or 4. When 1 is the first digit,
the remaining digits, (1, 2, 0, 0, 4), can be arranged in 60 ways. When 4
or 2 is the first digit, the remaining ones can be arranged in 30 ways.

In the same way, when completing with the pair (0,3), the first digit can
be 1, 3 or 4. In each case, the remaining ones (three zeros and two distinct
non-zero digits) can be arranged in 20 ways.

In conclusion, we have 60 + 2 - 30 + 3 - 20 = 180 numbers which satisfy
the given property.

Problem 4.2.3. Find the sum of the digits of the numbers from 1 to
1,000,000.

Solution. Write the numbers from 0 to 999,999 in a rectangular array

as follows:

9 9 9 9 9 9
There are 1,000,000 six-digits numbers, hence 6,000,000 digits are used.
In each column every digit is equally represented, as in the units column
each digit appears from 10 to 10, in the tens column each digit appears

successively in blocks of 10 and so on. Thus each digit appears 600,000
times, so the required sum is

600,000 - 45+ 1 = 27,000, 001

(do not forget to count 1 from 1,000,000).
Problem 4.2.4. Find all the positive integers n which are equal to the
sum of its digits added to the product of its digits.
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Solution. Let ajaz ... a,, a1 # 0 and asg,...,a, € {0,1,...,9}, be a
number such that

ajaz...a, =a1 +az+---+ap, +aiaz...a,.
The relation is equivalent to
a1 (10" = 1)+ ao(10" 2 = 1) 4 - + 9a,,_1 = a1as ... a,
and

ag(lO”_z — 1) + - 4+ 9a,_1 = al(agag co.anp— 99...9 )
n—1 digits
The left-hand side of the equality is nonnegative, whole the right-hand
side is nonpositive, hence both are equal to zero. The left-hand side is zero
ifn=0or

a2=a3:---:an_1=0.

For as = a3 = --- = a,_1 = 0 the left-hand side do not equal zero, hence
n = 2. Then a1(ag —9) =0, so ag = 0 and a; € {1,2,...,9}. The number
are 19, 29, 39, 49, 59, 69, 79, 89, 99.

Problem 4.2.5. What is the smallest multiple of 99 whose digits sum
to 99 and which begins and ends with 977

(1997 Rio Platense Mathematical Olympiad)

Solution. We refer to the digits of the number besides the two 97s as
interior digits; the sum of these digits is 99 —2(947) = 67. Since each digit
is at most 9, there are at least 8 such digits.

Note that the sum of digits being 99 forces the number to be divisible
by 9; thus it suffices to ensure that the number be divisible by 11, which is
to say, the alternating sum of digits must be divisible by 11.

Suppose the number has exactly 8 interior digits. If a is the sum of the
odd interior places and b the sum of the even places, we have a + b = 67
and a —b = —3 (mod 11). Since a — b must also be odd, we have a —b > 7
or a —b < —15, and so either a > 37 or b > 41, contradicting the fact that
a and b are each the sum of four digits.

Now suppose the number has 9 interior digits. In this case, a — b = 0
(mod 11), s0 a —b > 11 or a — b < —11. In the latter case, b > 39, again
a contradiction, but in the former case, we have a > 39, which is possible

because a is now the sum of five digits. To minimize the original number,
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we take the odd digits to be 3, 9, 9, 9, 9 and the even digits to be 1, 9, 9,
9, making the minimal number 9731999999997.

Problem 4.2.6. Find all the positive integers n such that there are non-
negative integers a and b with

S(a) = S(b) = S(a+b) =n.

(1999 Romanian Selection Test for JBMO)

Solution. We prove that the required numbers are all multiples of 9.
a) Let n be an integer such that there are positive integers a and b so
that
S(a) = S(b) — S(a+0).

We prove that 9|n.
We have the property
9|k — S(k). (1)

Using the relation (1) we obtain

9la — S(a) (2)
9|b— S(b) (3)
and
9(a+0b) — S(a+b). (4)
From (2) and (3) follows that

9la+b— (S(a) + S(b)) (5)

hence
9|S(a) +S(b) —S(a+b)=n+n—n=n, (6)

as desired.

b) Conversely, we prove that if n = 9p is a multiple of 9, then integers
a,b > 0 with S(a) = S(b) = S(a + b) can be found. Indeed, set a =
531531...531 and b =171171...171. Then a + b = 702702 ...702 and

3p digits 3p digits 3p digits

S(a) =8(b)=S(a+b) =9p=n,

as claimed.
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Proposed problems

Problem 4.2.7. Show that there exist infinitely many natural numbers
n such that S(3") > S(37H1).

(1997 Russian Mathematical Olympiad)

Problem 4.2.8. Do there exist three natural numbers a, b, ¢ such that
S(a+b) <5, S(b+c) <5, S(c+a) <5, but S(a+b+c) > 507

(1998 Russian Mathematical Olympiad)

Problem 4.2.9. Prove that there exist distinct positive integers

{ni}lgigg)o such that
ni 4+ S(n1) =n2 + S(ng) = -+ =nso + S(nso).
(1999 Polish Mathematical Olympiad)

Problem 4.2.10. The sum of the decimal digits of the natural number
n is 100, and that of 44n is 800. What is the sum of the digits of 3n?

(1999 Russian Mathematical Olympiad)

Problem 4.2.11. Consider all numbers of the form 3n2? + n + 1, where
n is a positive integer.

(a) How small can the sum of the digits (in base 10) of such a number
be?

(b) Can such a number have the sum of its digits (in base 10) equal to
19997

(1999 United Kingdom Mathematical Olympiad)

Problem 4.2.12. Consider the set A of all positive integers n with the
following properties: the decimal expansion contains no 0, and the sum of
the (decimal) digits of n divides n.

(a) Prove that there exist infinitely many elements in A with the following
property: the digits that appear in the decimal expansion of A appear the
same number of times.

(b) Show that for each positive integer k, there exists an element in A
with exactly k digits.

(2001 Austrian-Polish Mathematics Competition)
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4.3 Other problems involving digits

Problem 4.3.1. Prove that there are at least 666 positive composite
numbers with 2006 digits, having a digit equal to 7 and all the rest equal
to 1.

Solution. The given numbers are

ng=111...1711...1 = 111...1 4+6000...0
— —_—— ——
k digits 2006 digits k digits

1
= §(102006 —1)+6-10F, &k =0,2005.

It is obvious that none of these numbers is a multiple of 2, 3, 5 or 11, as
11 divides 111...1, but not 6 - 10*.
—_——

2006 digits
So we are lead to the idea of counting multiples of 7 and 13. We have

9ng = 100 - 100068 — 1 + 54 - 10F = 2 (—1)%8 — 1 + (=2)- 10 = 1 —
2. 10* (mod 7), hence 7|ny if 10F = 3¥ = 4 (mod 7). This happens for
k =4,10,16,...,2002 so there are 334 multiples of 7. Furthermore, 9n; =
7-(=1)%8 —14+2.10%F = 6 + 2 - 10¥ (mod 13), hence 13|n;, if 10¥ =
10 (mod 13). This happens for £ = 1,7,13,19,...,2005, so there are 335

multiples of 13. In all we have found 669 non-prime numbers.

Problem 4.3.2. Let a1, a9, ..., a19s be nonzero integers between 1 and 9,
inclusive. Prove that at most 100 of the numbers aiaz .- ax (1 <k < 106)

are perfect squares.
(2001 Russian Mathematical Olympiad)
Solution. For each positive integer x, let d(x) be the number of decimal
digits in z.
Lemma. Suppose that y > = are perfect squares such that y = 102z + ¢

or some positive integers b, ¢ with ¢ < 10%°. Then
p g

dly) — 1> 2(d(z) — 1).

Proof. Because y > 10z, we have /gy > 10°\/z. Because /g and 10°/z
are both integers, \/y > IOb\/E + 1, so that 10%2 + ¢ = y > 10%¢ + 2 -
10°y/z + 1. Thus, ¢ > 2 - 10°/z + 1.

Also, 10?® > ¢ by assumption, implying that

10% < ¢>2-10°/z + 1.
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Hence, 10° > 2,/z. It follows that
y > 102z > 422

Therefore,

as desired.

We claim that there are at most 20 perfect squares aias...ar with an
even (resp. odd) number of digits. Let s1 < s2 < --- < s, be these perfect
squares. Clearly d(s,) < 105. We now prove that if n > 1, then d(s,) >
1+42n— 1

Because s1, 82, . .., 8, all have an even (resp. odd) number of digits, for
each i = 1,2,...,n — 1, we can write 5,41 = 10%s; + ¢ for some integers
b>0and 0 < ¢ < 10%. Because no a; equals 0, we further know that
0 < c. Hence, by our lemma,

d(si+1) —1 = 2(d(s;) — 1)

for eachi=1,2,...,n— 1. Because d(s2) — 1 > 2, we thus have d(s,)—1 >
271 as desired.
Thus, if n > 1,
142771 < d(s,) < 106,

and
n <

log(10% — 1
{&J 1= 20,
log 2
Hence, there are at most 20 perfect squares aias - - - ax with an even (resp.
odd) number of digits.

Therefore, there are at most 40 < 100 perfect squares aias ... ax.

Proposed problems

Problem 4.3.3. A wobbly number is a positive integer whose digits in
base 10 are alternately non-zero and zero, the units digit being non-zero.
Determine all positive integers which do not divide any wobbly number.

(35" IMO Shortlist)

Problem 4.3.4. A positive integer is called monotonic if its digits in
base 10, read from left right, are in nondecreasing order. Prove that for
each n € N; there exists an n-digit monotonic number which is a perfect

square.
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(2000 Belarussian Mathematical Olympiad)



D

Basic Principles in Number Theory

5.1 Two simple principles
5.1.1 Extremal arguments

In many problems it is useful to consider the least or the greatest element
with a certain property. Very often such a choice leads to the construction
of other elements or to a contradiction.

Problem 5.1.1. Show that there exist infinitely many positive integers

n such that the largest prime divisor of n* 4+ 1 is greater than 2n.
(2001 St. Petersburg City Mathematical Olympiad)

Solution. First we prove the following result.

Lemma. There are infinitely many numbers that are prime divisors of
m* + 1 for some m.

Proof. Suppose that there are only finite number of such primes. Let
P1,D2, - - -, Pk be all of them. Let p be any prime divisor of (p1ps ... px)*+1.
This number cannot equal to any p;. It makes a contradiction with our
assumption, and proves the lemma. (I

Let P be the set of all numbers being prime divisors of m* + 1 for some
m. Pick any p from P and m from Z, such that p divides m* + 1. Let 7 be
the residue of m modulo p. We have r < p, p|r* +1 and p|(p — r)* + 1. Let



104 5. BASIC PRINCIPLES IN NUMBER THEORY

n be the minimum of r and p — r. It follows that n < p/2 and p > 2n and
of course p|n* + 1. Thus we have found for each p € P a good number n,,.
Since n, > /p — 1, and P is infinite, the set {n, : p € P} is also infinite.

Problem 5.1.2. Let ay,as, ... be strictly increasing sequence of positive
integers such that ged(am, @n) = Ggeq(m,n) for all positive integers m and n.
There exists a least positive integer k for which there exist positive integers
r < k and s > k such that ai = a,as. Prove that r divides k and that k
divides s.

(2001 Indian Mathematical Olympiad)

Solution. We begin by proving a lemma.

Lemma. If positive integers a,b, ¢ satisfy b> = ac, then

ged(a,b)? = ged(a, c) - a.

Proof. Consider any prime p. Let e be the highest exponent such that
p¢ divides b, and let e; and ey be the corresponding highest exponents for
a and c, respectively. Because b?> = ac, we have 2e = e; + es. If €1 > e,
then the highest powers of p that divide gcd(a, b), gcd(a, ), and a are e, es
and e, respectively. Otherwise, these highest powers are all e;. Therefore,
in both cases, the exponent of p on the left side of the desired equation is
the same as the exponent of p on the right side. The desired result follows.
O

Applying the lemma to the given equation az = a,as, we have
gcd(amak)2 = gcd(ay, as)a,.
It now follows from the given equation that

2 —
a’gcd(r,k) = Qgcd(r,s)r-

Assume, for sake of contradiction, that ged(r, k) < r, so that
Aged(rk) < ar. Then from the above equation, it follows that ageq(r k) >
Aged(r,s), 50 that ged(r,k) > ged(r,s). But then we have (ko,70,50) =
(ged(r, k), ged(r, s),r) satisfies af, = ar,as, wWith ro < ko < so and
ko < r < k, contradicting the minimality of k.

Thus, we must have ged(r, k) = r, implying that r|k. Then

ng(arv ak) = Qgcd(r,k) = Qr,
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ag . . .
0 ay|ak. Thus as = ar— is an integer multiple of a, and
ar

Aged(k,s) = ng(aka as) = Q.-

Because a1, ag, ... is increasing, it follows that ged(k, s) = k. Therefore,
k|s, completing the proof.
Problem 5.1.3. Determine all pairs (n,p) of positive integers such that

p is a prime, n < 2p and (p — 1)" + 1 is divisible by nP~1.
(40th TMO)

Solution. All pairs (1,p), where p is a prime number, satisfy the con-
ditions. When p = 2, it follows n = 2 and thus the pair (2,2) is also a
solution of the problem. Thus, we may suppose p > 3 and let n be such
that n < 2p and n?~! divides (p—1)"+1. Since (p—1)"+1 is odd number,
it follows that n < 2p. We shall prove that n = p.

Let ¢ be a minimal prime divisor of n. Since g|n and nP~1|(p — 1)" + 1,
it follows (p — 1)® = —1 (mod ¢). Since n and ¢ — 1 are relatively prime
numbers we may express an + b(q — 1) = 1.

We have

p—1=(p—1)" D = (p—1)"(p—1)T D = (-1)"1" = -1 (mod q),

because a must be odd. This shows that g|p, and therefore ¢ = p. Since
n < 2p, by the consideration of g, we have n = p.
Let consider in these conditions the original divisibility:

P=li(n 1)V 4+ 1 =pP— Py p-1 P\ p—2_ .. p 141
PPp-1)P+1=p (1>p +<2p )t

ol (e (o]

Therefore p — 1 = 2, p = 3 and then obtain the pair (3,3).

The conclusion is: the required solutions are (1, p), (2,2) and (3, 3), where
p is an arbitrary prime.

Remark. With a little bit more work, we can even erase the condition
n < 2p.

5.1.2 Pigeonhole principle

Let S be a nonempty set and let S1,.5s,...,S, be a partition of S (that
is SiUSU---US, =S and S;NS; =0 for i # j). If a1, az,...,an41 are
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distinct elements in S, then there is a k € {1,2,...,n + 1} such that at
least two of these elements belong to Sj.

This simple observation is called the Pigeonhole Principle (or the Dirich-
let’s Principle).

Examples. 1) Let mq,ma, ..., mp41 be distinct integers. Then m; = m;
(mod n) for some i,j € {1,2,...,n+ 1}, i # j.

Indeed, let Sy = {z € Z| * = ¢t (mod n)}, t = 1,2,...,n. There is
ak e {1,2,...,n 4+ 1} such that Sj contains at least two of the given
integers, say m; and m;. Then m; = m; (mod n).

2) (Erdos) Given n + 1 distinct positive integers mq,ma, ..., My41 DOt
exceeding 2n, prove that there are two of them m; and m; such that m;|m;.

Indeed for each s € {1,2,...,n+ 1} write ms = 2°° ¢4, where e, is a non-
negative integer and ¢, is an odd positive integer. Because g1, q2, ..., qn+1 €
{1,2,...,2n} and the set {1,2,...,2n} has exactly n odd elements, it fol-
lows that ¢; = ¢; for some ¢ and j. Without loss of generality, assume that
e; < e;j. Then m;|m;, as desired.

Problem 5.1.4. Prove that among any integers ay,as, . .., a,, there are

some whose sum is a multiple of n.

Solution. Let s1 = ay, so = a1 +as,..., Sy, = a1 +as + -+ + an.
If at least one of the integers si, s9,...,s, is divisible by n, then we are
done. If not, there are n — 1 possible remainders when s1, so,...,S, are

divided by n. It follows that s; = s; (mod n) for some i and j, i < j. Then
8j — 8 = @i+1 + - - - + a; is a multiple of n (see also Example 1) above).

Problem 5.1.5. In a 10 x 10 table are written natural numbers not ex-
ceeding 10. Any two numbers that appear in adjacent or diagonally adjacent
spaces of the table are relatively prime. Prove that some number appears in
the table at least 17 times.

(2001 St. Petersburg City Mathematical Olympiad)

Solution. In any 2 x 2 square, only one of the numbers can be divisible
by 2 and only one can be divisible by 3, so if we tile the table with these
2 X 2 squares, at most 50 of the numbers in the table are divisible by 2
or 3. The remaining 50 numbers must be divided among the integers not
divisible by 2 or 3, and thus only ones available are 1, 5, and 7. By the

Pigeonhole Principle, one of these numbers appears at least 17 times.



5.1. TWO SIMPLE PRINCIPLES 107

Problem 5.1.6. Prove that from any set of 117 pairwise distinct three-
digit numbers, it is possible to select 4 pairwise disjoint subsets such that

the sums of the numbers in each subset are equal.
(2001 Russian Mathematical Olympiad)

Solution. We examine subsets of exactly two numbers. Clearly, if two

distinct subsets have the same sum, they must be disjoint. The number of

two-element subsets is (1;7 = 6786. Furthermore, the lowest attainable

sum is 100 + 101 = 201, while the highest sum is 998 + 999 = 1997, for
a maximum of 1797 different sums. By the Pigeonhole Principle and the
fact that 1797 -3 + 1 = 5392 < 6786, we see that there are 4 two-element
subsets with the required property.

Proposed problems

Problem 5.1.7. Let n; < ny < -+ < nagoo < 10'% be positive inte-
gers. Prove that one can find two nonempty disjoint subsets A and B of

{nl, no, ... ,nzooo} such that
|A] = |B| ,Zx:Zx, and ZaﬂQ:sz.
z€A z€B TEA zEB

(2001 Polish Mathematical Olympiad)

Problem 5.1.8. Find the greatest positive integer n for which there
exist n nonnegative integers x1, o, ..., T,, not all zero, such that for any
sequence €1, €2, . . ., £, of elements {—1,0, 1}, not all zero, n® does not divide

E1X1 + E2X2 + -+ EnTy.
(1996 Romanian Mathematical Olympiad)

Problem 5.1.9. Given a positive integer n, prove that there exists € > 0
such that for any n positive real numbers a1, as, ..., a,, there exists ¢t > 0
such that

1
e < {tar}, {tas}, ..., {tan} < 3
(1998 St. Petersburg City Mathematical Olympiad)

Problem 5.1.10. We have 2" prime numbers written on the blackboard

in a line. We know that there are less than n different prime numbers on
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the blackboard. Prove that there is a compact subsequence of numbers in
that line whose product is a perfect square.

Problem 5.1.11. Let 1 = 22 = 23 = 1 and zp43 = Tpn + Tn41Tni2
for all positive integers n. Prove that for any positive integer m there is an

integer k > 0 such that m divides x.

5.2 Mathematical induction

Mathematical induction is a powerful and elegant method for proving
statements depending on nonnegative integers.

Let (P(n))n>0 be a sequence of propositions. The method of mathemat-
ical induction assists us in proving that P(n) is true for all n > ng, where
np is a given nonnegative integer.

Mathematical Induction (weak form): Suppose that:

o P(ng) is true;
e For all k > ng, P(k) is true implies P(k + 1) is true.

Then P(n) is true for all n > ny.
Mathematical Induction (with step s): Let s be a fized positive integer.
Suppose that:

e P(ng),P(nog+1),...,P(ng+s—1) are true;
e For all k > ng, P(k) is true implies P(k + s) is true.

Then P(n) is true for all n > ny.
Mathematical Induction (strong form): Suppose that

e P(ng) is true;

e For all k > ng, P(m) is true for all m with ng < m < k implies
P(k+1) is true.

Then P(n) is true for all n > ny.

This method of proof is widely used in various areas of Mathematics,
including Number Theory.

Problem 5.2.1. Prove that, for any integer n > 2, there exist positive

integers ai, az, ..., G, such that a; —a; divides a; +a; for 1 <i <j <mn.

(Kvant)
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Solution. We will prove the statement by induction on the number of
terms n. For n = 2, we can choose a; = 1 and as = 2.

We assume that we can find integers ai,as,...,a, such that a; — a;
divides a; +a; for 1 <i < j < n, where n is a positive integer greater than
1. Let m be the least common multiple of numbers a1, as,...,an, a; — a;,
forall 1 <i < j <n. Then

(a},ab,a%, ... ane1) = (Mym+ai,m+az,...,m+ay)

is a n + 1 term sequence satisfying the conditions of the problem. Indeed,
a; —a} = a;—1 divides m and a; + a} = 2m + a;_1 by the definition of
m and a —a} = aj_1 —a;—1 (2 < i < j < n+1) divides m. Also,
aj + a; = 2m + (aj—1 + a;—1) by the definition of m and by the inductive
hypothesis. Therefore our induction is complete.

Problem 5.2.2. Prove that, for each n > 2, the number n! can be rep-

resented as the sum of n distinct divisors of itself.
(Erdos)

Solution. Strengthening the statement, by imposing the condition that
one of the n divisors should be 1, puts us in a winning position. The question
here is how we came to think of this. Well, there is just about one way to go
in using the induction hypothesis n! = dy+ds+- - -+d,, (where d1,ds, ..., d,
are the n divisors arranged in increasing order); namely, multiplying the
above relation by n + 1. This yields

(n+D)!'=Mnm+Ddy +(n+Ddo+---+ (n+ 1)d,

=di+ndi+(n+1)da+---+ (n+1)d,.

We split (n+1)d; into di +ndy, thus getting n+ 1 summands, as needed.
Of them, only the second one might not be a divisor of (n+ 1)!. We would
like to ensure that it is such a divisor, too. Hence the idea of insisting that
dy =1.

Problem 5.2.3. Prove that there are infinitely many numbers not con-
taining the digit 0, that are divisible by the sum of their digits.
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Solution. Let us prove by induction that 11...1 is a good choice. The
—
3’71
base case is clearly verified and for the inductive step we have

10°—1  (10%)3 -1
.= _ (207)

3n+1
103" =1, oan  an
= —5— (10" +10%" +1)
—11...1-N,
3TL

where N is a multiple of 3 and the conclusion follows.

Problem 5.2.4. Let n be a positive integer. Let O,, be the number of
2n-tuples (x1,.-.,Tn,Y1,---,Yn) with values in 0 or 1 for which the sum
T1Yy1 + -+ Thyn 1S odd, and let E, be the number of 2n-tuples for which
the sum is even. Prove that

0, 2"-1
E, 241

(1997 Iberoamerican Mathematical Olympiad)

Solution. We prove by induction that O, = 2?"~! —2"~! and E,, =
22n=1 1 97—l which will give the desired ratio.

The base case is n = 1. This case works because O; = 1 = 2! —2°, and
Ei=e=2" 420,

For the inductive step, we assume this is true for n = k; then 1y +-- -+
TRy is even for 22~1 4+ 28=19k_tuples and odd for 225~1 — 22k=12k_tuples.
Now, x1y1 + - -+ + Tk4+1Yk+1 is odd if and only if either x1y; + - - - + T Yy is
odd and is even or x1y1 + - - - + Yk is even and Ti41Yk+1 is odd. Tp41Yk+1
can be odd one way and even three ways, so

OkJrl — 3(22]@71 _ 2]671) + 22]@71 + 2]671 — 22(7@«‘,»1)71 o 2(k + 1) 1

and Fy4q = 92(k+1) _ Ok+1, which completes the induction.
Problem 5.2.5. Prove that for all integers n > 3, there exist odd positive
integers x,vy, such that Tx? 4+ y? = 2™,

(1996 Bulgarian Mathematical Olympiad)

Solution. We will prove that there exist odd positive integers z,, yn
such that 722 +y2 = 2", n > 3.
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For n = 3, we have x3 = y3 = 1. Now suppose that for a given integer
n > 3 we have odd integers x,,, y,, satisfying 722 +y2 = 2". We shall exhibit
a pair (Tn41, Yn+1) of odd positive integers such that 7x72L+1 +y,21+1 = ontl
In fact,

T, £ 2 7T, F 2
7 ("Ty") + (”Ty") — 2(7$3+y2) :2n+1

Precisely one of the numbers In —2~_ In and [0 ; nl is odd (as their sum

is the larger of x,, and y,, which is odd). If, for example, IntYn

then

is odd,

7xn - yn Tp — yn
on In _ 3
2 Tt T
is also odd (as a sum of an odd and an even number), hence in this case

we may choose

Tpt1 = ———— and Ypp1 = ———
2 2
If @ is odd, then
Tx, + Ty +
so we can choose
_ ‘xn_yn| . TTn + Yn
Tntl = 5 and  yp41 = —s

Remark. Actually, the problem goes back to Euler.
Problem 5.2.6. Let f(z) = 23+ 17. Prove that for each natural number

n, n > 2, there is a natural number x for which f(x) is divisible by 3" but
not by 3"+,

(1999 Japanese Mathematical Olympiad)

Solution. We prove the result by induction on n. If n = 2, then x =1
suffices. Now suppose that the claim is true for n > 2, that is, there is a
natural number y such that 3® 4+ 17 is divisible by 3" but not 3"+!. We
prove that the claim is true for n + 1.

Suppose we have integers a,m such that a is not divisible by 3 and
m > 2. Then a?> = 1 (mod 3) and thus 3™a? = 3™ (mod 3™*1). Also,
because m > 2 we have 3m — 3 > 2m — 1 > m + 1. Hence

(a + 3"’*1)3 =a®+3ma? + 32" g+ 333 =434 3™ (mod 3m+1).
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Because y* + 17 is divisible by 3", it is congruent to either 0, 3", or
23" modulo 3", Because 3 does not divide 17, 3 cannot divide y either.
Hence applying our result from the previous paragraph twice, once with
(a,m) = (y,n) and once with (a,m) = (y + 3", n), we find that 37+
must divide either (y +3"71)% + 17 or (y +2-3""1)3 +17.

Hence there exists a natural number 2’ not divisible by 3 such that
37|/ 4 17, If 37+2 does not divide #/* 4 17, we are done. Otherwise, we
claim the number 2 = 2’ 4+ 3" suffices. Because z = 2/ 43"~ 143143~
the result from previous the paragraphs tells us that 2? = 2’ S 43n 4
3m 437 = /% (mod 3"*1). Thus 3"+1|2® + 17 as well. On the other hand,
because z = 2/ + 3", we have 23 = 2/° + 3"+ % 2/® (mod 3"2). It follows
that 3"%2 does not divide 2% 4+ 17, as desired. This completes the inductive

step.

Proposed problems

Problem 5.2.7. Let p be an odd prime. The sequence (ay )n>0 is defined
as follows: ap =0,a1 =1,..., ap—2 =p—2and, for alln > p—1, a,, is the
least positive integer that does not form an arithmetic sequence of length
p with any of the preceding terms. Prove that, for all n, a, is the number
obtained by writing n in base p — 1 and reading the result in base p.

(1995 USA Mathematical Olympiad)

Problem 5.2.8. Suppose that x,y and z are natural numbers such that
xy = 22+1. Prove that there exist integers a, b, ¢ and d such that = a?+b2,
y=c?+d? and z = ac + bd.

(Euler’s problem)

Problem 5.2.9. Find all pairs of sets A, B, which satisfy the conditions:
(i) AUB = Z;

(ii) if x € A, then x — 1 € B;

(iii) if x € B and y € B, then z +y € A.

(2002 Romanian IMO Team Selection Test)

Problem 5.2.10. Find all positive integers n such that

m

n= I_I(ak—|—1)7

k=0
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where @, a,,—1...ag is the decimal representation of n.
(2001 Japanese Mathematical Olympiad)

Problem 5.2.11. The sequence (up)n>0 is defined as follows: ug = 2,

U = 3 and

Un4+1 = un(u%_l —2)—wuy forn=1,2,...

2n _(—1)"

Prove that [u,] =273 , for all n > 0 ([x] denotes the integer part
of ).

(18th IMO)

5.3 Infinite descent

Fermat' was the first mathematicians to use a method of proof called
the infinite descent.
Let P be a property concerning the nonnegative integers and let

(P(n))n>1 be the sequence of propositions,
P(n): "n satisfies property P”

The following method is useful in proving that proposition P(n) is false
for all large enough n.

Let k be a nonnegative integer. Suppose that:
e P(k) is not true;

e if P(m) is true for a positive integer m > k, then there is some

smaller j, m > j > k for which P(j) is true.

Then P(n) is false for all n > k.

This is just the contrapositive of strong induction, applied to the negation
of proposition P(n). In the language of the ladder metaphor, if you know
you cannot reach any rung without first reaching a lower rung, and you
also know you cannot reach the bottom rung, then you cannot reach any

rungs.

L Pierre de Fermat (1601-1665), French lawyer and government official most remem-
bered for his work in number theory, in particular for Fermat’s Last Theorem. He is also

important in the foundations of the calculus.
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The above is often called the finite descent method.
The Fermat’s method of infinite descent (FMID) can be formulated as
follows:

Let k be a nonnegative integer. Suppose that:

e if P(m) is true for an integer m > k, then there must be some smaller
integer j, m > j > k for which P(j) is true.

Then P(n) is false for all n > k.

That is, if there where an n for which P(n) was true, one could construct
a sequence n > ny > ng > ... all of which would be greater than k, but
for the nonnegative integers, no such descending is possible.

Two special cases of FMID are particularly useful in solving Number
Theory problems.

FMID Variant 1. There is no sequence of nonnegative integers ny >
ng > ...

In some situations it is convenient to replace FMID Variant 1 by the
following equivalent form: If ng is the smallest positive integer n for which
P(n) is true, then P(n) is false for all n < ng. In fact, this is equivalent to
an extremal argument.

FMID Variant 2. If the sequence of nonnegative integers (n;);>1 sat-
isfies the inequalities ny > ng > ..., then there exists ig such that
Ny = Njg4+1 = - -+

Problem 5.3.1. Find all triples (x,y,z) of nonnegative integers such
that

23 423 = 423

Solution. Note that (0,0,0) is such a triple. We will prove that there
is no other. Assume that (z1,y1,21) is a nontrivial solution to the given
equation. Because /2, ¥/4 are both irrational, it is not difficult to see that
1 >0,y >0, 20 >0.

From z3 + 2y? = 423 it follows that 2|z1, so x1 = 2x2, 29 € Z;. Then
473 + y3 = 223, hence y; = 2y, Y2 € Z,. Similarly, z; = 229, 20 € Z.
We obtain the "new” solution (x2,ys, 22) with x1 > 2, y1 > ya2, 21 > 22.
Continuing this procedure, we construct a sequence of positive integral
triples (@n, Yn, 2n)n>1 such that 1 > xo > x3 > ... But this contradicts
FMID Variant 1.
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Proposed problems

Problem 5.3.2. Find all primes p for which there exist positive integers
x,y and n such that p" = 23 4 ¢3.

(2000 Hungarian Mathematical Olympiad)

5.4 Inclusion-exclusion

The main result in this section is contained in the following theorem.
Theorem 5.4.1. Let 51,55, ...,S, be the finite sets. Then

:Z|Si‘_ Z |Sim5j‘+ Z ‘SZ'QS]‘QSH
=1

1<i<j<n 1<i<j<k<n

n

Us

=1

where |S| denotes the number of elements in S.

Proof. We proceed by induction. For n = 2, we have to prove that
|S1 U Sa| = [S1] + |S2| — |S1 N Sa|. This is clear because the number of
elements in S7 U Sy is the number of elements in S; and S5 less the ones

in S NSy, since the latter elements were counted twice.
k

The inductive step uses the formula above for S; — U S, and Sy —

i=1
Skt1- 0

The formula in the Theorem is called the Inclusion-FEzclusion Principle.

Example. How many positive integers not exceeding 1000 are divisible
by 2, or 3, or 52
Solution. Consider the sets

S1 = {2m|1 <m <500}, Sy = {3n|1 <n <333}, S3={5p|1 <p<200}.
Then
Sl n SQ = {6q|1 S q S 166}, Sl n Sg = {10T|1 S T S 100},

SoNS; ={15s]1 <s <66} and S;NS2NS5={30u|l <u<33}.

Applying the Inclusion-Exclusion Principle we obtain

|S1US2US3| = |S1]|+|S2|+]53] —[S1NS2|—[S1NS3| = |S2NS3|—|S1NS2NS3]|
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= 500 + 333 + 200 — 166 — 100 — 66 + 33 = 734.

The dual version of Theorem 5.4.1 is the following:
Theorem 5.4.2. Let S1,S55,...,S, be subsets of the finite set S and let
Si =5 —S; be the complementary set of S;, i =1,2,...,n. Then

Sil =1SI=> 18+ > 1SinS;— > 1SinS;n Sk
i=1 i=1 1<i<j<n 1<i<j<k<n
o (=DM ) Sil
=1
Proof. Let

A= ﬁgz and B:LRJSZ
i=1

i=1
It is clear that AUB = S and AN B = (). Hence |S| = |A| + | B| and the
conclusion follows from Theorem 5.4.1. O

Example. How many positive integers exceeding 120 are divisible by
neither 2, nor 3, nor 5¢

Solution. Consider the sets
S1={2m|1 <m <60}, Sy ={3n|1<n<40}, S5={5p|1 <p<24}.
We have
S1N Sy ={6g|]1 <qg<20}, S1NS5={10r|1 <r <12},
SoNS;={15s]1 <s<8} and S1NS2NS3={30u|l <u<4}.
Applying the formula in Theorem 5.3.2, we get
191 N 85N 83| =120 — (|S1| 4 |S2| + |Ss]) + 51 N Sa| + [S1 N Ss| +[S2 N S|

—[S1 NS5 NSs| =120 — (60+40+24) + 20+ 12+ 8 — 4 = 32.

Problem 5.4.1. Let S = {1,2,3,...,280}. Find the smallest integer
n such that each n-element subset of S contains five numbers which are
pairwise relatively prime.

(3274 IMO)



5.4. INCLUSION-EXCLUSION 117

Solution. The solutions is given in two steps.
First step. Let consider the sets

M, = {2,4,6,...,280}, M;s={3,6,9,...,279},

Ms = {5,10,15,...,280}, M;={7,14,...,280}

and let M = Ms U M3 U M5 U M7. The following cardinalities are obvious:
|Msy| = 140, |Ms| =93, |Ms| =56 and |My|=40.

It is easy to prove that:

280 280
|M2ﬂM3|: — :467 ‘MQﬂM5|: - :28’

6 10

280 280
MonNMz|l=|—|=2 MsNMs|l=|—|=1
| M2 N My [14] 0, |Mszn Ms [15] 8,

280 280
Manag = | 52| =15, mnas = | 32] =

280 280

|J\4'20]\4'3QJWS:[%:|:97 ‘MgﬂMgﬂMﬂ: Vo) =6,

2

105]

280
MyNMsN M| = | —
|Ma N Ms (0 My| {70}

28
4, ‘M4QM5QM7|: [

and

280
MQQM3QM5QM7|:|: ]

210

By the Principle of Inclusion-Exclusion we obtain:
|M| =Mz U Mz U Ms U M|

— 140493456440 — (464 28+ 20+ 18+ 13+ 8) + (9+ 6+ 4+2) — 1 = 216.

By the Pigeonhole Principle, any five-element subset of M contains at
least two elements from the same subset M;, i € {2,3,5,7}. These elements
are not relatively prime numbers. Thus, we prove that n > 216.

Second step. We will prove that n = 217.

The set S\ M contains 280 — 216 = 64 elements. It contains prime
numbers and composite numbers. Taking account that [v/280] = 16, we
may state that the composite numbers in S\ M are precisely the elements
of the set

C={11%11-13;11-17;11-19;11-23;13% 13- 17; 13- 19}.
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Observe that |C| = 8. Thus, the set S\ M contains 1, 8 composite
numbers are 55 prime numbers. Also, taking in account the prime numbers
2, 3, 5, 7 we infer that the set S contains 59 prime numbers in all.

Let p1 =2, po = 3, p3 = 5,...,p59 be all these prime numbers and let
denote P = {1,p2,pa,...,p59}. Thus, |P| = 60.

Let T be a subset containing 217 elements of S. If |T'N P| > 5 it follows
that T contains 5 elements which are relatively prime numbers. So, let
suppose [T'N P| < 4. In this case, [T N (S \ P)| > 217 — 4 = 213. Since
S contains 220 composite numbers, it follows that at most 7 composite
numbers are not in 7.

Consider the following five-element subsets of S\ P:

Ay = {2%32%; 5%, 7% 132
Ay =1{2-23;3-19;5-17;7-13;11- 11}
A3 ={2-29;3-23;5-19;7-17;11- 13}
Ay ={2-31;3-29;5-23;7-19;11- 17}
As = {2-37:3-31;5-29;7-23;11 - 19}
Ag=1{2-41;3-37:5-31;7-29; 11 - 23}
A7 = {2-43;3-41;5-37,7-23;13 - 17}
As={2-47:3.43;5-41;7 37,12 - 19}.

By the Pigeonhole Principle, there exists a set A;, 1 < i < 8, such that
A; C T if not, the set S\ T would contain 8 composite numbers. Each A;

contains five relatively prime numbers and we are done.

Proposed problems

Problem 5.4.2. The numbers from 1 to 1000000 can be colored black or
white. A permissible move consists of selecting a number from 1 to 1000000
and changing the color of that number and each number not relatively
prime to it. Initially all of the numbers are black. Is it possible to make a
sequence of moves after which all of the numbers are colored white?

(1999 Russian Mathematical Olympiad)
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Arithmetic Functions

6.1 Multiplicative functions

Arithmetic functions are defined on the positive integers and are complex
valued. The arithmetic function f # 0 is called multiplicative if for any

relatively prime positive integers m and n,

f(mn) = f(m)f(n)

The arithmetic function f # 0 is called completely multiplicative if the
relation above holds for any positive integers m and n.

Remarks. 1) If f : Z7 — C is multiplicative, then f(1) = 1. Indeed, if
a is a positive integer for which f(a) # 0, then f(a) = f(a-1) = f(a)f(1)
and simplify by f(a) yields f(1) = 1.

2) If f is multiplicative and n = p{* ...p}

* is the prime factorization of

the positive integer n, then f(n) = f(p7*)... f(pp*), that is in order to
compute f(n) it suffices to compute f(p;*),i=1,...,k.

3) If f is completely multiplicative and n = p{*...p* is the prime
factorization of n, then f(n) = f(p1)* ... f(px)®*, that is in order to
compute f(n) it suffices to compute f(p;), i =1,... k.
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An important arithmetic function is the Mébius' function defined by

1 if n=1
un) =< 0 if p%|n for some prime p > 1
(=1)* if n=p;...pr, where pi,...,px are distinct primes

For example, 11(2) = —1, u(b) = 1, u(12) = (22 - 3) = 0.

Theorem 6.1.1. The Mobius function u is multiplicative.

Proof. Let m,n be positive integers such that ged(m,n) = 1. If p?|m for
some p > 1, then p*lmn and so pu(m) = p(mn) = 0 and we are done.
Consider now m = p1...pk, » = q1...qn, Where p1,....,Dk,q1,---,qh
are distinct primes. Then u(m) = (=1)*, u(n) = (=1 and mn =
PL...Drq1---qn. It follows that p(mn) = (—=1)*" = (~D)F(-1)" =
() (). O

For an arithmetic function f we define its summation function F' by

F(n) =) f(d).
dn

The connection between f and F' is given by the following result.

Theorem 6.1.2. If f is multiplicative, then so is its summation function
F.

Proof. Let m,n be positive integers such that ged(m,n) = 1 and let
d be a divisor of mn. Then d can be uniquely represented as d = kh,
where k|m and h|n. Because gcd(m,n) = 1, we have ged(k,h) = 1, so

f(kh) = f(k)f(h). Hence
F(mn) =Y f(d) =) f(k)f(h)

d|lmn k|lm
h|n

= | sy | | Do fh) | = F(m)F(n). O

k|lm h|n
Remark. If f is a multiplicative function and n = p{* ... py*, then

k

F(n) = [T+ fi) +---+ f() (1)

i=1

L August Ferdinand Mébius (1790-1868), German mathematician best known for his
work in topology, especially for his conception of the M&bius strip, a two dimensional

surface with only one side.
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Indeed, after multiplication in the right hand side we get a sum hav-
ing terms of the form f(p?l)f(pg") = f(pfl...pg"'), where 0 < ) <
a1,...,0 < By < ag. This sum is obviously F(n).

From (1) we can derive the following formula

D ould)f(d) = (1= f(p1)) ... (1= f(pr). 2)
d|n

The function g(n) = p(n)f(n) is multiplicative, hence applying (1) we
get for its summation function G

k k

G(n) = [T+ u)f @) = [TQ = £)-

i=1 i=1
Theorem 6.1.3. (Mdobius inversion formula) Let f be an arithmetic func-

tion and let F' be its summation function. Then

fm) =Y waF (5). (3)

d|n

Proof. We have

ST u@F (Z) =Y u@d) | Yo f@) | =3 [ u@fe)

d|n d|n cl g dln \c|lZ
=Y (X n@ie | =35 [ Y@ | = i),
cln \d|% cln djm

n
51 for — >1 h d) = 0.
since for — we have dgln w(d)

We have used the fact tﬁat sets

{@apdmad ) and {@ofcnandal}

are equal. O
Theorem 6.1.4. Let f be an arithmetic function and let F be its sum-
mation function. If F is multiplicative, then so is f.
Proof. Let m, n be positive integers such that ged(m,n) = 1 and let d be
a divisor of mn. Then d = kh where k|m, h|n and ged(k, h) = 1. Applying
Moébius inversion formula it follows

o) = 32 @ () = S pan) ()

dlmn k|m
h|n
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=SS uwntor () F (3) = | S ()] | Suoor (7)

k|m klm h|n
h|n

= f(m)f(n). O

Let f and g be two arithmetic functions. Define their convolution product
or Dirichlet® product f * g by

(f+g)(m) = > Fldg (%)

d|n

Problem 6.1.1. 1) Prove that the convolution product is commutative
and associative.

2) Prove that for any arithmetic function f,

fre=cxf=].

where e(n) =1 if n =1 and 0 otherwise.
Solution. Let f and g be two arithmetic functions. Then

(o) =X s (5) = X 1 (5 ) ot = @ oo
diln

d|n

since if d runs through all divisors of, then so does d; = % Therefore
frg=gx*f.

Let f,g,h be arithmetic functions. To prove the associativity law, let
u=g*h and consider fxu = f* (g h). We have

(Fru)m) =Y f@u(2) = 3 fla) Y g®)h(e)

aln ad=n be=d

= > fl@g®)h(e)

abc=n

Similarly, if we set v = f * g and consider v % h, we have

(wxh)(n) =Y v(d)h(e) =D > fla)gb)h(c)

de=n de=n ab=d

2 Johann Peter Gustav Lejeune Dirichlet (1805-1859), German mathematician who
proved in 1837 that there are infinitely many primes in any arithmetic progression of
integers for which the common difference is relatively prime to the terms. Dirichlet
has essential contributions in number theory, probability theory, functional analysis and

Fourier series.
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= 3 Fa)g®)h(e),

abe=n

hence f* (g*h) = (f * g) % h.
2) We have

(e ) =D =@f (5) = ).

d|n

and we get e x f = fxe = f.
Problem 6.1.2. Let f be an arithmetical function. If f(1) # 0, then
there is a unique arithmetical function g such that

[*xg=¢.

Solution. We show by induction on n that (f*g)(n) = (n) has a unique
solution ¢(1),...,g(n).

1
For n =1, we have f(1)g(1) = 1, hence g(1) = m
Suppose n > 1 and assume g(1),...,g(n —1) have been determined such

that (f x g)(k) = e(k) holds for k =1,2,...,n — 1. Then

fgm)+ " fldyg (Z) =0,
d|n
d>1

and we get

on) =55 > s (%)

d>1
i.e. the function g is unique.
Remark. The unique function g satisfying f * g = ¢ where f(1) # 0 is
called the convolution inverse of f.
Problem 6.1.3. If f and g are multiplicative, so is their convolution
product.
Solution. Let h = f x g. We have

mn
h(mn) = |Z f@g (=)
Set ¢ = ab, where a|m and b|n. Since ged(m,n) = 1, we have

hmn) = > 3" flab)g (= 7)

a|lm bln
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= (X s@g (%) ) | X s®yg (3) | = hm)hi).
alm bln

Problem 6.1.4. 1) If both g and f x g are multiplicative, then f is also
multiplicative.

2) If g is multiplicative, then so is its convolution inverse.

Solution. 1) We shall prove by contradiction. Suppose f is not multi-
plicative. Let h = f x g. Since f is not multiplicative, there exist m and
n, ged(m,n) = 1 such that f(mn) # f(m)f(n). We choose mn as small
as possible. If mn = 1, then we get f(1) # f(1)f(1) so f(1) # 1. Since
h(1) = f(1)g(1) = f(1) # 1, h is not multiplicative, a contradiction. If
mn > 1, we have f(ab) = f(a)f(b) for all ab < mn with gcd(a,b) = 1. Now

h(mn) = f(mn)g(1) + Z f(ab)g (%)
alm
bln

= fmm)+ Y F@f®)g (=) g(F) = FOmm) = F(m)f(n) +h(m)h(n).
alm
bln
ab<mn

Since f(mn) # f(m)f(n), h(mn) # h(m)h(n). Therefore, h is not mul-

tiplicative, a contradiction.
L— g lyg
1

2) Denote by g—! the convolution inverse of g. Then & = g g~
and g are both multiplicative. From the previous result it follows that g~
is multiplicative.

Problem 6.1.5. Prove that the arithmetic function f is completely mul-
tiplicative if and only if f x f = f7, where T(n) is the number of divisors

of n.
(American Mathematical Monthly)

Solution. If f is completely multiplicative, we have

(Fx N =Y F@F (Z) =7 (a5) =D fw)
din din din

= f(n)Y 1= f(n)r(n) = (f)(n),

d|n
and the relation follows.
Conversely, take n = 1, and it follows f(1) = 0 or f(1) = 1. Now
suppose that n > 2 and let n = p{*...pp* the prime factorization of
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n. Put a(n) = a1 + - - - + ay. It suffice to show that for any positive integer
n > 2, the following relation holds

fln) = F) ()™ - f (o)™

We proceed by induction on a. If a(n) = 1, then n is a prime, say n = p,
and the property follows from the fact that

2f(p) =71(p)f(p) = fF()f(p) + fp)f(1) =2f(1)f(p)

Suppose then that the property holds for all n with a(n) < k. Take any
n with a(n) = k + 1. Then

T(n)f(n) =2f(1)f(n)+ > _ fla)f(b),

where the sum runs over all a,b with ab =n and 1 < a,b < n. It follows
that a(a) <k, a(b) < k and from the inductive assumption we get

T(n)f(n) = 2f(1)f(n) + (r(n) = 2)F2 (D) f(p1)™ .. f(pr)™

Since n is not a prime, certainly 7(n) > 2 and so, for both f(1) =0 and
f(1) = 1, the desired result follows.

Proposed problems

Problem 6.1.6. Let f be a function from the positive integers to the
integers satisfying f(m + n) = f(n) (mod m) for all m,n > 1 (e.g., a
polynomial with integer coefficients). Let g(n) be the number of values
(including repetitions) of f(1), f(2),..., f(n) divisible by n, and let h(n)
be the number of these values relatively prime to n. Show that g and h are

multiplicative functions related by

where n = p{"* ... pp*

is the prime factorization of n.
(American Mathematical Monthly)
Problem 6.1.7. Define A(1) = 1, and if n = p{" ... p.*, define

Am) = (—1)er o
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1) Show that A is completely multiplicative.
2) Prove that

Z)‘(d):{ 1 if nis a square

0 otherwise
d|n

3) Find the convolutive inverse of .

Problem 6.1.8. Let an integer n > 1 be factored into primes: n =
pt ... p%m (p; distinct) and let its own positive integral exponents be fac-
tored similarly. The process is to be repeated until it terminates with a
unique ”constellation” of prime numbers. For example, the constellation
for 192 is 192 = 22°3 . 3 and for 10000 is 10000 = 22" - 52. Call an arith-
metic function g generally multiplicative if g(ab) = g(a)g(b) whenever the
constellations for a and b have no prime in common.

1) Prove that every multiplicative function is generally multiplicative. Is
the converse true?

2) Let h be an additive function (i.e. h(ab) = h(a) + h(b) whenever
gcd(a,b) = 1). Call a function k generally additive if k(ab) = k(a) + k(b)
whenever the constellations for a and b have no prime in common. Prove

that every additive function is generally additive. Is the converse true?

(American Mathematical Monthly)

6.2 Number of divisors

For a positive integer n denote by 7(n) the number of its divisors. It is

T(n) =1,

d|n

clear that

that is 7 is the summation function of the multiplicative function f(m) = 1,
m € Z . Applying Theorem 6.1.2 it follows that 7 is multiplicative.

Theorem 6.2.1. If n = pi" ...pg* is the prime factorization of n, then

7(n) = (o1 +1)... (ax +1). (4)

Proof. Using the fact that 7 is multiplicative, we have
T(n) =7 ... 7(pp*) = (a1 +1) ... (ap + 1),

because pj has exactly a; + 1 divisors, i =1,..., k. ([l
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Problem 6.2.1. For anyn > 2

w-£ (5152

1

Solution. Note that
{n J n—1| | 1 ifkn
k k ] 0 otherwise

> (- [)) -2

k=1

Hence

Remark. Tt is clear that n is a prime if and only if 7(n) = 2. Hence

> (1i)-%)) =2

k=1

if and only if n is a prime.
Problem 6.2.2. Find all positive integers d that have exactly 16 positive
integral divisors dy,ds, ... ,dig such that

l=di <dy<---<dig=d,
d6 =18 and dg —ds =17.
(1998 Irish Mathematical Olympiad)

Solution. Let d = p{*p5? ... p%m with p1, ..., py, distinct primes. Then
n has (a1 + 1)(az + 1)...(an + 1) divisors. Since 18 = 2 - 3% it has 6
divisors: 1, 2, 3, 6, 9, 18. Since d has 16 divisors, we know that d = 2 - 33p
ord=2-3".1fb=2-3",ds = 54, dy = 81 and dy — dg # 17. Thus
d = 2 -33p for some prime p > 18. If p < 27, then d7 = p, dg = 27,
dg =2p=27+17+44 = p =22, a contradiction. Thus p > 27. If p < 54,
d7 =27,dg =p,dg =54 =ds+17 = p=37.If p > 54, then d7 = 27,
dg = 54, dg = dg + 17 = 71. We obtain two solutions for the problem:
2-3%.37=1998 and 2- 3% - 71 = 3834.

Problem 6.2.3. For how many a) even and b) odd numbers n, does n
divide 3'2 — 1, yet n does not divide 3* — 1 for k =1,2,...,11.

(1995 Austrian Mathematical Olympiad)
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Solution. We note

32 - 1=03°"-1@3+1)
=32 -DE*+32+1)(B2+1)(3* =32 +1)
= (23)(7-13)(2- 5)(73).

Recall that the number of divisors of p{*...p" is (eq +1)...(ex + 1).
Therefore 312 — 1 has 2-2-2-2 = 16 odd divisors and 4 - 16 = 64 even
divisors.

If 32 =1 (mod m) for some integer m, then the smallest integer d such
that 3¢ = 1 (mod m) divides 12. (Otherwise we could write 12 = pq + r
with 0 < 7 < d and find 3" = 1 (mod m)). Hence to ensure n { 3 — 1 for
k=1,...,11, we need only check k =1,2,3,4,6. But

3'—1=2
32-1=23
3-1=2-13
3-1=2"5

3 -1=2%7.13
The odd divisors we throw out are 1, 5, 7, 13, 91, while the even divisors
are 2 for 1 <4< 4,2"-5for 1 <i <4, and each of 27 -7, 27 - 13, and
27.7-13 for 1 < i < 3. As we are discarding 17 even divisors and 5 odd
ones, we remain with 47 even divisors and 11 odd ones.
Problem 6.2.4. Let 7(n) denote the number of divisors of the natural

number n. Prove that the sequence T(n? + 1) does not become monotonic
from any given point onwards.

(1998 St. Petersburg City Mathematical Olympiad)

Solution. We first note that for n even, 7(n? + 1) < n. Indeed, exactly
half of the divisors of n2 4+ 1 are less than n, and all are odd, so there are
at most 2(n/2) in all.

Now if 7(n? + 1) becomes strictly monotonic for n > N, then

(n+1)2+1)>7(n*+1)+2
for n > N (since 7(k) is even for k not a perfect square). Thus
7(n?+1) > 7(N* 4+ 1) +2(n — N)

which exceeds n for large, contradiction.
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Proposed problems

Problem 6.2.5. Does there exist a positive integer such that the product

of its proper divisors ends with exactly 2001 zeroes?
(2001 Russian Mathematical Olympiad)

Problem 6.2.6. Prove that the number of divisors of the form 4k 41 of
each positive integer is not less than the number of its divisors of the form
4k + 3.

Problem 6.2.7. Let dy,ds,...,d; be all positive divisors of a positive
integer. For each i = 1,2,...,[ denote by a; the number of divisors of d;.
Then

adtas 4 +al = (g Fag+ -+ ay)’

6.3 Sum of divisors

For a positive integer n denote by o(n) the sum of its divisors. It is clear

that
o(n) = Z d,
dn
that is o is the summation function of the multiplicative function d(m) =
m, m € Z% . Applying Theorem 6.1.2 it follows that o is multiplicative.
Theorem 6.3.1. If n = pi" ...pp* is the prime factorization of n, then

o(n):pcflﬂ_l...pzkﬂ_l
p1—1 pr—1

Proof. Because o is multiplicative, it suffices to compute o(py), i =

1,..., k. The divisors of p;* are 1,p;,...,p;", hence

;DEMH -1

0(p?i)=1+pi+-“+1??i=p_7_1

and the conclusion follows. O
Problem 6.3.1. For anyn > 2,
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Solution. We have
{EJ_{n_lJ_ 1 ifkn
k k 0 otherwise

e (il []) - e

k=1

hence

Remark. It is clear that n is a prime if and only if o(n) = n+ 1. Hence

ékw - V;IJ) —

if and only if n is a prime.

Problem 6.3.2. If n is a composite positive integer, then

o(n) >n++vn+1.

Solution. The integer n has a divisor d such that d # 1 and d < /n.

n n
Because yl is also a divisor of n, it follows that vl > /n, therefore

o(m) =Y k=1+n+5>n+ v+l
k|n

Problem 6.3.3. For anyn > 7,

o(n) <nlnn.

Solution. Let dy,ds, ..., ds all divisors of n. They can be also written
as
n o n n
dl b d2 b b dk )
hence

(n) = I I P § T
=G TG 4 ) =" 2 k)
where k = 7(n). Inducting on k we prove that for any k > 2,

1 1
14+ =+ +- <.81+Ink
gt <8+
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Using the inequality 7(n) < 24/n (Problem 2, Section 6.2) it follows that

1 1 1
1+§+"'+E < .81+ 1In(2vy/n) < 1.51+§1nn.
1
For n > 21 we have Inn > 1.51+ 3 Inn and checking directly the desired
inequality for n =7, ..., 20, the conclusion follows.
Problem 6.3.4. For anyn > 2,

U_n) > /n.
7(n)
Solution. Let d1,ds, . . ., d.(,) ne the divisors of n. They can be rewritten
as
n n n
dy ’ dy ' ’ dT(n)
Hence

1 1 1

and the conclusion follows.

Proposed problems

Problem 6.3.5. For any n > 2,

o(n) < ny/27(n).
(1999 Belarusian Mathematical Olympiad)

Problem 6.3.6. Find all the four-digit numbers so that when decom-
posed in prime factors have the sum of the prime factors equal to the sum
of the exponents.

Problem 6.3.7. Let m, n, k be positive integers with n > 1. Show that
a(n)k #£nm.

(2001 St. Petersburg City Mathematical Olympiad)

6.4 Euler’s totient function

For any positive integer n we denote by ¢(n) the number of all integers

m such that m < n and ged(m,n) = 1. The arithmetic function ¢ is called
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the Euler3’s totient function. It is clear that ¢(1) = 1 and for any prime p,
»(p) = p— 1. Moreover, if n is a positive integer such that ¢(n) =n — 1
then n is a prime.

Theorem 6.4.1. (Gauss) For any positive integer n,

Z o(d) =n.
d|n

Proof. Let dy,ds,...,d; be the divisors of n and let S; = {m| m <
n and ged(m,n) = d;}, i = 1,...,k. If m € S;, then m = d;m’, where

ged m’,g = 1. Because m’ < 37 from the definition of ¢ it follows
that |S;| = ¢ (g) The sets Sy, ..., Sk give a partition of {1,2,...,n},
hence
k " k
—_ = Sz =n.
2o (a) =%

But {dﬁl,...,;—k}:{dl,...,dk},sogw(d):n. |

Theorem 6.4.2. The function ¢ is muZﬁiplicative.

Proof. From Theorem 6.4.1 we obtain that the summation function of
@ is F(n) = n, which is multiplicative.

The conclusion now follows from Theorem 6.1.4. (]

Theorem 6.4.3. If n = p{" ...py* is the prime factorization of n > 1,

then ) )
cn(i- 1) (i- 1),

Proof. We first notice that for any prime p and for any positive integer

a’
a1
e(p*)=p* —p*'=p (1—5)-

Indeed, the number of all positive integers not exceeding n that are

a—1

divisible by p is p®~!, hence p(p®) = p® — p

3 Leonhard Euler (1707-1783), Swiss mathematician which worked at the Petersburg
Academy and Berlin Academy of Science. Euler systematized mathematics by introduc-
ing the symbols e and 7, and f(z) for a function of z. He also made major contributions
in optics, mechanics, electricity, and magnetism. Euler did important work in number
theory, proving that the divergence of the harmonic series implies an infinite number of

primes, factoring the fifth Fermat number, and introducing the totient function .
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Using Theorem 6.4.3 we have

o(n) =o@T" ... pp*) = e@") - e(py*)

Alternative proof. We employ the inclusion-exclusion principle. Let
T; = {dld <nand p;ild}, i=1,... k.
It follows that

Ty U---UTg = {m|m < n and ged(m,n) > 1}.

Hence
k
) =n= MU UT =0 =3 T+ 3 m)
i=1 1<i<j<k
— e (DM N T
We have
T = =, ITNTj| = ——, .. |Tin- N Tk = —
Pi PiD;j DL Dk
Finally,
o(n) =n 1_Z—+ Z e ()P ——
i=1 bi 1<i<j<k Pipj P1---Dk

—n(1- ) (1-2). 0

Problem 6.4.1. Prove that there are infinitely many even positive inte-

gers k such that the equation p(n) =k has no solution.

(Schinzel?)

4 Andrzej Schinzel, Polish mathematician with important work on exponential congru-
ences, Euler’s p-function, Diophantine equations, applications of transcendental number

theory to arithmetic problems.
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Solution. Take k =2 -7, m > 1. If n = p{"* ...p;", then

1 1
W =po (1— = ). pon(1- =
e(n) = pi ( p1) Ph < ph)

al—l Oéh—l

=p' (o= 1) . (pn — 1),

If at least two of the primes py, ..., py are odd, then 4|¢(n) and ¢(n) # k.
If n = 2°pf, with p > 3, then

o(n) = 2°p” (1 - %) <1 - 1) =271 (p—1).

p

In this case the equality ¢(n) = k is also impossible.
Problem 6.4.2. Prove that there are infinitely many positive integers n
such that

n
n)=—.

p(n) = 3

Solution. Let n = 2 - 3™, where m is a positive integer. Then

p(n) =(2-3™) = p(2)p(3™) =3" -3 1 =2.3""1 = g

for infinitely many values of n, as desired.

Problem 6.4.3. If n is a composite positive integer, then

p(n) <n—n.

Solution. because n is composite, it has a prime factor p; < \/n. We
have

(1LY (1 L) e (12 ) a1 L) v

Problem 6.4.4. For any positive integer n, n # 2, n # 6,

@(n) > v/n.

Solution. Let m > 2. If n = 2™, then
p(n) =2m —2m~t =om=1 > \/om — | /p,
If n = p™, where p is an odd prime then

p(n) =p™ —p" L =p" " p—1) = Vp" = Vn.
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If n = p™, where p is a prime greater than or equal to 5, then p(n) >

V2n.

If n is odd or 4|n, then

p(n) = opr") .. o) 2 \/E PO = /.

If n = 2t, with ¢ odd, t # 1, t # 3, then all prime factors of ¢ are greater
than or equal to 5, hence ¢(n) = ¢(t) > v/2t. It remains to settle the case
n=2-3,i>2 Fori=2, ¢(12) =6 > /18 and for i > 3, p(n) =2 -3~
and the inequality reduces to v/2 - 321 > 1, which is clear.

Proposed problems

Problem 6.4.5. For a positive integer n, let 1(n) be the number of
prime factors of n. Show that if p(n) divides n — 1 and ¢(n) < 3, then n is
prime.

(1998 Korean Mathematical Olympiad)

Problem 6.4.6. Show that the equation ¢(n) = 7(n) has only the solu-
tions n = 1, 3,8, 10, 18, 24, 30.

Problem 6.4.7. Let n > 6 be an integer and a1, as, . . ., ar be all positive
integers less than n and relatively prime to n. If

Qs — a1 =a3 — Qg =+ =ag — ap—1 > 0,

prove that n must be either a prime number or a power of 2.

(3274 IMO)

6.5 Exponent of a prime and Legendre’s formula

Let p be a prime and let us denote by v,(a) the exponent of p in the
decomposition of a. Of course, if p doesn’t divide a, then vy(a) = 0.

It is easy to prove the following properties of vp:

1) min{vp(a), vp(b)} < vp(a + b) < max{vy(a),vy(b)};

2) vp(ab) = vp(a) + vp(b);

3) vp(ged(ar, ag, ..., an)) = min{v,(a1), vp(az),. .., vp(an)};

4) vp(lem(ar, ag, . .., an)) = max{vy(a1), vp(az),. .., vp(an)}.

If we have to prove that alb, then it is enough to prove that the exponent

of any prime number in decomposition of a is at least the exponent of
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that prime in the decomposition of b. Now, let us repeat the above idea
in terms of function v,. We have a|b if and only if for any prime p we
have vp(a) < vp(b). Also, we have a = b if and only if for any prime p,
vp(a) = vp(b).

For any positive integer n, let e,(n) be the exponent of prime p in the
prime factorization of n!.

The arithmetic function e, is called the Legendre®’s function associated
with the prime p and it is connected to function v, by the relation e,(n) =
vp(nl).

The following result gives a formula for the computation of e,(n).

Theorem 6.5.1. (Legendre’s formula) For any prime p and any positive

ep(n) =3 H _n=50)

3 —
Sl p—1

mteger n,

where Sp(n) is the sum of digits of n when written in base p.
Proof. For n < p it is clear that e,(n) = 0. If n > p, then in order to

determine e, (n) we need to consider only the multiples of p in the product

1-2...n, that is (1-p)(2-p)...(kp) = p*k!, where k = {EJ Hence
p

o) = | 2] e (| 2]).

n
Replacing n by {—J and taking into account that
p

p p?

215

we obtain

o ([5)= 3)ro (15)

Continuing this procedure we get

o () = [5] = ([5)

5 Adrien-Marie Legendre (1752-1833), French mathematician who was a disciple of
Euler and Lagrange. In number theory, he studied the function ep, and he proved the

unsolvability of Fermat’s last theorem for n = 5.
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(7)) [+ (1))

where m is the least positive integer such that n < p™*!, that is m =
Inn
{—J Summing up the relations above yields

Inp
- [e]+[3] - 2]

The other relation is not difficult. Indeed, let us write

n,::ao4—a1p-+-~-+-akpk7

where ag,a1,...,a; € {0,1,...,p— 1} and a; # 0. Then

n n _ k—1 k—2
» + 2 +eor=artagzpt--otagp”  +aztagptotagpt T+ tag,

and now using the formula

pi+1 -1

p—1

)

we find exactly the second part in expression of e,(n). O
Examples. 1) Let us find the exponent of 7 in 400!. Applying Legendre’s
formula, we have

400 400 400

2) Let us determine the exponent of 3 in ((3!)!)l. We have ((3D)!)! =
(6!)! = 720!. Applying Legendre’s formula yields

720 720 720 720 720
e R AR R R
= 240 + 80 4 26 4+ 8 4+ 2 = 356.

Problem 6.5.1. Let p be a prime. Find the exponent of p in the prime
factorization of (p™)!.

Solution. Using Legendre’s formula, we have

m mo_q

m p m— m— p
ep(p)=2{—iJ:p PP p L=
Lp p
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Problem 6.5.2. Find all positive integers n such that n! ends in exactly

1000 zeros.
Solution. There are clearly more 2’s than 5’s in the prime factorization

of n!, hence it suffices to solve the equation

2]+ |5+ = 1000.

5 52
But
5|+ 5]+ <t =1 4Ly
5 52 5 52 5 5
_n 1 _n
5 1_1 4
5

hence n > 4000.
On the other hand, using the inequality |a] > a — 1, we have

o (£1)+ (50 (3 -1) (G 1)+ (-

S P
5 5 52 53 54 s 1

SO
1005 -4 - 3125
3101 < 4022.

We narrowed n down to {4001, 4002, ...,4021}. Using Legendre’s formula
we find that 4005 is the first positive integer with the desired property and
that 4009 is the last. Hence n = 4005, 4006, 4007, 4008, 4009.

Problem 6.5.3. Prove that for any positive integer n, 2™ does not divide

n!.
Solution. The exponent of 2 in the prime factorization of n! is

k=ez(n)= {gJ—FL%J%—

‘We have

k<n+n+ n 1_'_1_~_ n _
2 22 2 2 ) 21

and we are done.
Remark. Similarly, for any prime p, p” does not divide ((p — 1)n)!.
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Problem 6.5.4. Find all positive integers n such that 2"~ divides n!.
Solution. If n =2° s =0,1,2,..., then

ea(n) =251 4 4241 =2% -1,

hence 277! divides n!.

Assume that n is odd, n = 2n1 + 1. Then from 2"~! = 22" |(2ny +1)! =
(2n1)!(2n1 +1) it follows 221 |(2n1)! which is not possible by Problem 6.5.3.
We get n = 2my. If my is odd, m; = 2no + 1, we have

2n= 1 = 242 (4ny + 2)1 = (4no)!(dng 4+ 1) - 2- (2np + 1)

and we obtain 2%"2|(4ns)!, a contradiction. Continuing this procedure we
get n = 2°.

Problem 6.5.5. Let p be an odd prime. Prove that the exponent of p in
the prime factorization of 1-3-5...(2m+ 1) is

> (5] 5D

(2m +1)!
m!.2m

Solution. We have
1-3-5...2m+1) =

Because p is odd, the desired exponent is

1)) =3 |22 -5 2

k>1 p =1 WP

and the conclusion follows.

Problem 6.5.6. If p is a prime and p®| (n)} then p® < n.
m

() = =

the exponent of p in the prime factorization of ( ) is
m

B = ep(n) = ep(m) — ep(n —m) =y (L%J - L%J - V;kmD |

k>1

Solution. Because

This sum has at most s nonzero terms, where p* < n < p**1. Using the

inequality |z +y| — |z] — |y] < 1for z = 1% and y = np_km’ it follows

n
that 8 < s. Because pa|( ), we obtain « < 8 < s, hence p* < p* < n.
m
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Proposed problems

Problem 6.5.7. a) If p is a prime, prove that for any positive integer n,

Inn L] 1 n
_\‘HJ+7L;F<61)<”)<])—1.
b) Prove that
lim ep(n) = —1

Problem 6.5.8. Show that for all nonnegative integers m, n the number

(2m)!(2n)!
minl(m + n)!

is also an integer.
(14th TMO)

(3a + 3D)!(2a)!(3b)!(2b)!
(2a + 3b)!(a + 2b)!(a + b)lal(b!)?
ger for any positive integers a, b.

Problem 6.5.9. Prove that is an inte-

(American Mathematical Monthly)

Problem 6.5.10. Prove that there exists a constant ¢ such that for any

positive integers a, b, n that verify a! - b!|n! we have a +b < n + clnn.
(Paul Erdds)

Problem 6.5.11. Prove that the equation

1 n 1 o 1
10" ny! mel ng!

does not have integer solutions such that 1 < nj; <ng < --- < ng.

(Tuymaada Olimpiad)



7
More on Divisibility

7.1 Fermat’s Little Theorem

Theorem 7.1.1. (Fermat’s Little Theorem) Let a be a positive integer
and let p be a prime. Then

a? =a (mod p).

Proof. We induct on a. For ¢ = 1 every thing is clear. Assume that
pla? — a. Then

(@+1)P —(a+1) = (ap—a)+:§:: (flz)ak.

Using the fact that p| (i) for 1 < k < p—1 and the inductive hypothesis,
it follows that p|(a +1)? — (a + 1), that is (a +1)? = (a + 1) (mod p).

Alternative proof. Suppose that ged(a, p) = 1 and let us show that a?~! =
1 (mod p). Consider the integers a, 2a, . . ., (p—1)a, whose remainders when
divided by p are distinct (otherwise, if ia = ja (mod p), then p|(i — j)a,
that is p|é — j, which holds only if i = j). Hence

a-(2a)...(p—la=1-2...(p—1) (mod p),



142 7. MORE ON DIVISIBILITY

a?tp—1)!'=(p—-1) (mod p).

Because p and (p — 1)! are relatively prime, the conclusion follows. [

Remark. The converse is not true. For example, 3-11-17 divides a® 17—

31117 _q (for instance, if 11 did not divide a,

a, since 3, 11, 17 each divides a
then from Fermat’s Little Theorem, we have 11|a'® — 1, hence 11]a'%%¢ —1,
i.e. 11|a®%! — @ and 561 = 3-11-17).

We saw that the composite integers n satisfying a™ = a (mod n) for any
integer a are called Carmichael’s integers. There are also even such integers,
for example n = 2-73-1103. For other comments see Remark after Problem
1.6.5.

Problem 7.1.1. 1) Let a be a positive integer. Prove that any prime
factor > 2 of a®> + 1 is of the form 4m + 1.

2) Prove that there are infinitely many primes of the form 4m + 1.

Solution. 1) Assume that pla® + 1 and p = 4m + 3 for some integer m.
Then a? = —1 (mod p) and a?~! = (a?)?"*! = (-1)?"+! = —1 (mod p),
contradicting Fermat’s Little Theorem.

2) The integer (n!)? + 1 is of the form 4m + 1, hence all its prime factors
are of this form. It follows that for any prime p of the form 4m+1, (p!)?+1
is a prime or has a prime factor p; > p and we are done.

Problem 7.1.2. For any prime p, pP*1+(p+1)? is not a perfect square.

Solution. For p = 2 the property holds. Assume by way of contradiction
that p > 3 and pP ™1+ (p+1)P = 2 for some positive integer ¢. It follows that
(t+ppT+1)(t—ppT+1) = (p+1)P, hence t+p" =27~ 1yP and tFp"F = 0P,
for some positive integers u, v such that 2uv = p+ 1 and ged(u,v) = 1. We
obtain ppTJrl = [2P72yP —pP|. Using Fermat’s Little Theorem we have u? = u
(mod p), vP = v (mod p) and 2P~ =1 (mod p), so u = 2v (mod p). From
2uv = p+ 1 we get uw = 2v and finally v = 1 and p = 3. This leads to
t? = 145, a contradiction.

Problem 7.1.3. Let n > 2, a > 0 be integers and p a prime such that
a? =1 (mod p"™). Show that if p > 2, thena =1 (mod p"~ 1), and ifp = 2,
then a = +1 (mod 2"71).

(1995 UNESCO Mathematical Contest)

Solution. We have a? = 1 (mod p)" with n > 2, so a? = 1 (mod p).
But, from Fermat’s Little Theorem, a? = a (mod p), hence a =1 (mod p).

For a = 1, the result is obvious; otherwise, put a = 1 + kp?, where d > 1
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and p { k. Then for p > 2, a? = 1 + kp?t! + Mp??*! for M an integer.
Therefore d +1 > n and so s = 1 (mod p"~!). In case p = 2, we have
2"a? —1 = (a—1)(a+1). Since these differ by 2, both cannot be multiples
of 4. Hence either a+1 or a—1 is divisible by 2"~! i.e. a = £1 (mod 2"71),
as desired.

Problem 7.1.4. Find the smallest integer n such that among any n

integers, there exist 18 integers whose sum is divisible by 18.
(1997 Ukrainean Mathematical Olympiad)

Solution. The minimum is n = 35; the 34-element set of 17 zeroes and
17 ones shows that n > 35, so it remains to show that among 35 integers,
there are 18 whose sum is divisible by 18. In fact, one can show that for
any n, among 2n — 1 integers there are n whose sum is divisible by n.

We show this claim by induction on n; it’s clear for n = 1. If n is com-
posite, say n = pq, we can assemble sets of p integers whose sum is divisible
by p as long as at least 2p — 1 numbers remain; this gives 2¢ — 1 sets, and
again by the induction hypothesis, some g of these have sum divisible by gq.

Now suppose n = p is prime. The number x is divisible by p if and only
if zP=1 #£ 1 (mod p). Thus if the claim is false, then the sum of (a; +
-+-4a,)P~! over all subsets {ai,...,a,} of the given numbers is congruent
to

p—1
e1+---+e, < p—1is always divisible by p: if £ < p — 1 of the e; are
2p— 1 —

1 (mod p). On the other hand, the sum of a'...a," for

nonzero, then each product is repeated times, and the latter

is a multiple of p. This contradiction shows that the claim holds in this
case. (Note: to solve the original problem, of course it suffices to prove the
cases p = 2,3 directly).

Remark. The fact that for any n, among 2n — 1 integers there are n
whose sum is divisible by n is a famous theorem of Erdés and Ginzburg.

Problem 7.1.5. Several integers are given (some of them may be equal)
whose sum is equal to 1492. Decide whether the sum of their seventh powers
can equal

(a) 1996;

(b) 1998.

(1997 Czech-Slovak Match)
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Solution. (a) Consider a set of 1492 1’s, 4 2’s, and 8 -1’s. Their sum is
1492, and the sum of their seventh powers is 1482(1) 4 4(128) + 8(—1) =
1996.

(b) By Fermat’s Little Theorem, 7 =  (mod 7). Thus, the sum of the
numbers’ seventh powers must be congruent to the sum of the numbers,
modulo 7. But 1998 # 1492 (mod 7), so the numbers’ seventh powers can-
not add up to 1998.

Problem 7.1.6. Find the number of integers n > 1 for which the number

a®® — a is divisible by n for each integer a.

(1995 Bulgarian Mathematical Olympiad)

Solution. Let n have the required property. Then p? (p a prime) does not
divide n since p? does not divide p?® —p. Hence n is the multiple of different
prime numbers. On the other hand 22°—2 = 2-32.5.7-13-17-241. But n is not
divisible by 17 and 241 since 3% = —3 (mod 17) and 3%° = 32 (mod 241).
The Fermat Theorem implies that a?® = a (mod p) when p = 2,3,5,7,13.
Thus n should be equal to the divisors of 2-3-5-7-13, which are different
from 1 and there are 2° — 1 = 31 of them.

Problem 7.1.7. a) Find all positive integers n such that 7 divides 2™ —1.

b) Prove that for any positive integer n the number 2™ + 1 cannot be
divisible by 7.

(6t IMO)
Solution. Fermat’s Little Theorem gives:
20=1 (mod 7).

It follows from the divisibility 7|(2% — 1)(23 + 1) that 22 = 1 (mod 7).
Hence all numbers n which are divisible by 3 answer to the question.
Let n = 3k 4+ r where r =1 or r = 2. Then

2n =23k = (23% . 9" =2 or 4 (mod 7).

Hence, we cannot obtain 2" = —1 (mod 7).

Problem 7.1.8. Prove that the following are equivalent.

(a) For any positive integer a,n divides a™ — a.

(b) For any prime divisor p of n,p? does not divides n and p — 1 divides

n—1.

(1995 Turkish Mathematical Olympiad)
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Solution. First assume (a). If p?|n for some prime p, we must have
P2|(p+1)P" — (p + 1). However,

2 v 2
(p+1)" —(p+1)=p"—p+) (i)p’“.
k=2

All terms but the first are divisible by p?, contradicting the assumption.
Therefore p? 1 n. Moreover, if @ is a primitive root modulo p, then a"~! = 1
(mod p) implies p — 1|n — 1.

On the other hand, if n is square-free and p — 1|n — 1 for all primes
p|n, then for any a, either pla or a?~! = 1 (mod p); in either case a" = a
(mod p) for all p dividing n. Hence the conditions are equivalent.

Problem 7.1.9. Prove that the sequence {2 — 3|n = 2,3,...} contains

infinitely many pairs of relatively prime numbers.
(13t IMO)

Solution. We use the induction. The numbers 22 — 3, 23 — 3, 24 — 3 are
pairwise relatively prime numbers. We shall prove that if ny,no, ..., n; are

positive integers such that the members of the sequence
2m —39m 3 ...,2" -3 (1)

are relatively prime to each other, then there exists nyy; such that 2™++1 —3
is relatively prime to each number of the sequence (1).

Let {p1,p2,...,pr} be the set of all prime divisors of numbers from the
sequence (1). Then p1,pa,...,pr are odd prime numbers and by Fermat’s
Little Theorem

20—t =1 (mod p;).
It follows that
9(P1=1)(p2—1)...(pr—1) = (mod p;), Vi=1,...,r.

T

Let ngy1 = I_I(pZ — 1). We shall prove that 2™ — 3 and 2™+ — 3, are

relatively primle_,lfor alli =1,...,r. Let p be a common prime divisor of
2™ — 3 and 2™+t — 3. Then 2™+1 —3=1—-3 (mod p) =0 (mod p); this
is a contradiction.

Problem 7.1.10. Let p > 2 be a prime number such that 3|(p — 2). Let

S ={y* —2® — 1| x and y are integers, 0 < x,y < p—1}.

Prove that at most p elements of S are divisible by p.
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(1999 Balkan Mathematical Olympiad)

Solution. We need the following

Lemma. Given a prime p and a positive integer k > 1, if k and p — 1
are relatively prime then z* = y* (mod p) = x =y (mod p) for all x,y.

Proof. If y = 0 (mod p) the claim is obvious. Otherwise, note that
oF = yF = (zy=H* =1 (mod p), so it suffices to prove that a¥ = 1
(mod p) = a=1 (mod p).

Because ged(p — 1,k) = 1, there exist integers b and ¢ such that b(p —
1)+ ck=1. Thus, a* =1 (mod p) = a®=1 (modp) = o'~ PP~V =1
(mod p). If a = 0 this is impossible. Otherwise, by Fermat’s Little Theorem,
(a=®)P=1 =1 (mod p) so that a = 1 (mod p), as desired.

Alternatively, again note that clearly a # 0 (mod p). Then let d be
the order of a, the smallest positive integer such that a? = 1 (mod p);

we have d|k. Take the set {1,a,a?,...,a%"1}. If it does not contain
all of 1,2,...,p — 1 then pick some other element b and consider the
set {b,ba,ba?, .. .,bad’l}. These two sets are disjoint, because otherwise

ba' =a’ = b=da’"! (mod p), a contradiction. Continuing similarly, we
can partition {1,2,...,p—1} into d-element subsets, and hence d|p—1. How-
ever, d|k and ged(k,p — 1) = 1, implying that d = 1. Therefore a = a? = 1
(mod p), as desired. O

Because 3|p — 2, gcd(3,p — 1) = 1. Then from the claim, it follows that
the set of elements {13,23,... p3} equals {1,2,...,p} modulo p. Hence,
for each y with 0 < y < p — 1, there is exactly one  between 0 and p — 1
such that 2% = 4> — 1 (mod p): that is, such that p|y? — 2® — 1. Therefore

S contains at most p elements divisible by p, as desired.

Proposed problems

Problem 7.1.11. Let 3 — 2™ be a power of a prime for some positive
integer n. Prove that n is a prime.

Problem 7.1.12. Let f(x1,...,2,) be a polynomial with integer coeffi-
cients of total degree less than n. Show that the number of ordered n-tuples
(1,...,2pn) with 0 < z; <12 such that f(x1,...,2,) =0 (mod 13) is di-
visible by 13.

(1998 Turkish Mathematical Olympiad)

Problem 7.1.13. Find all pairs (m, n) of positive integers, with m,n >
2, such that a™ — 1 is divisible by m for each a € {1,2,...,n}.
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(2001 Romanian IMO Team Selection Test)

Problem 7.1.14. Let p be a prime and by an integer, 0 < by < p. Prove
that there exists a unique sequence of base p digits bg, b1,b2,...,0n,...
with the following property: If the base p representation of a number x
ends in the group of digits b,b,—1 ...b1by then so does the representation

of zP.
Problem 7.1.15. Determine all integers n > 1 such that 5— is an
n
integer.
(315t IMO)

Problem 7.1.16. Let p be a prime number. Prove that there exists a
prime number ¢ such that for every integer n, the number n? — p is not
divisible by q.

(44th TMO)
Problem 7.1.17. Prove that for any n > 1 we cannot have n|2"~! 4 1.
(Sierpinski)

Problem 7.1.18. Prove that for any natural number n, n! is a divisor
of

n—1

[J@—25.

k=0

7.2 FEuler’s Theorem

Theorem 7.2.1. (Euler’s Theorem) Let a and n be relatively prime pos-
itive integers. Then a¥™ =1 (mod n).

Proof. Consider the set S = {a1,az,...,a,(,)} consisting of all positive
integer less than n that are relatively prime to n. Because gcd(a,n) = 1, it

follows that aai,aas, ..., aa,,) is a permutation of a1, az, ..., ay(,). Then
(aar)(aaz)...(aaym)) = a10z2 ... aym)  (mod n).

Using that ged(ag,n) =1,k =1,2,...,¢(n), the conclusion now follows.
U

Remark. The Euler’s Theorem also follows from Fermat’s Little The-
orem. Indeed, let n = pi*...pp* be the prime factorization of n. We
have a?~' = 1 (mod p;), hence a?®1=1) = 1 (mod p2), a?i®i=1) = 1
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(mod p?), ..., a1 = (mod pi*). That is a?®’) =1 (mod i),
1 =1,..., k. Applying this property for each prime factor, the conclusion
follows.

Problem 7.2.1. Prove that for any positive integer s, there is a positive

integer n whose sum of digits is s and s|n.
(Sierpinski')

Solution. Let n = 10%¢(5) 4-10(s=D¢(s) 4-... 1 109(%)_ Tt is clear that the
sum of digits of n is s and that

n = (108@(8) —1)+ (10(3—1)¢(s) — 1) 4+ (10%0(8) 1) +s

is divisible by s, by Euler’s Theorem.
Problem 7.2.2. Let n > 3 be an odd integer with prime factorization
n=p"...p" (each p; is prime). If

eafo- ) 8)2)

prove that there is a prime p such that p divides 2™ — 1, but does not divide

m.
(1995 Iranian Mathematical Olympiad)

Solution. Because m = ¢(n) is Euler’s phi-function and n is odd, we
know by Euler Theorem that n divides 2™ — 1. We consider two cases.
r—1

First let n = p" > 3 for some odd prime p. Then m = p" —p is even

and m > 4. Since p divides
2m 1= (2™/2 —1)(2™/% 4+ 1),

is must also divide one of the factors on the right. Any prime divisor of the
other factor (note this factor exceeds 1) will also divide 2™ — 1 but will not
divide n = p".

If n has at least two distinct prime factors, then m = 0 (mod 4) and
p— 1 divides m/2 for each prime factor of n. Hence, by Fermat’s Theorem,
p also divides 2™/2 —1. It follows that no prime factor of n divides 2"/2 +1.
Hence any prime factor of 2/2 4 1 is a factor of 2 — 1 but not a factor

of n.

1 Waclaw Sierpinski (1882-1969), Polish mathematician with important work in the

area of set theory, point set topology and number theory.
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Problem 7.2.3. Let a > 1 be an integer. Show that the set
{a*+a—1,a°+a*>—1,...}
contains an infinite subset, any two members of which are relatively prime.

(1997 Romanian IMO Team Selection Test)

Solution. We show that any set of n elements of the set which are
pairwise coprime can be extended to a set of n + 1 elements. For n = 1,
note that any two consecutive terms in the sequence are relatively prime.
For n > 1, let N be the product of the numbers in the set so far; then
a?MNH 4 q9(N) _1 = g (mod N), and so can be added (since every element
of the sequence is coprime to a, N is as well).

Problem 7.2.4. Let X be the set of integers of the form

agklozk + a,zk_2102k_2 + -+ a2102 + ag,

where k is a nonnegative integer and as; € {1,2,...,9} fori =0,1,... k.
Show that every integer of the form 2P39, for p and q nonnegative integers,
divides some element of X.

(1997 Taiwanese Mathematical Olympiad)

Solution. In fact, every integer that is not divisible by 10 divides some
element of X. We first note that there exists a multiple of 47 in X with
2p — 1 digits for all nonnegative integer p. This follows by induction on p:
it’s obvious for p = 0,1, and if z is such a multiple for p = k, then we can
choose agy, so that o 4 az,10%* =0 (mod 4**1) since 10%* = 0 (mod 4%).

Now we proceed to show that any integer n that isn’t divisible by 10
divides some element of X. Let n = 2Pk, where k is odd. Then by the
lemma above one can find a multiple of 2P in X. Let m be the multiple,
d be the number of digits of m, and f = 109t! — 1. By Euler’s Theorem,
1098 = 1 (mod fk). Therefore m(10(4+De(Fk) _1) /(1041 —1) is divisible
by 2Pk and lies in X (since it is the concatenation of m’s).

Proposed problems

Problem 7.2.5. Prove that, for every positive integer n, there exists a
polynomial with integer coefficients whose values at 1,2, ..., n are different
powers of 2.
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(1999 Hungarian Mathematical Olympiad)

Problem 7.2.6. Let a > 1 be an odd positive integer. Find the least
positive integer n such that 22°%° is a divisor of a™ — 1.

(2000 Romanian IMO Team Selection Test)

Problem 7.2.7. Let n = pi'...p;* be the prime factorization of the
positive integer n and let r > 2 be an integer. Prove that the following are
equivalent:

(a) The equation 2" = a (mod n) has a solution for every a.

(b)yri=rg=---=rp=1and (p; —1,r) =1 for every ¢ € {1,2,...,k}.

(1995 UNESCO Mathematical Contest)

7.3 The order of an element

Given are the positive integer n > 1 and the integer a such that
ged(a,n) = 1, the smallest possible positive integer d for which n|a? — 1
is called the order of a modulo n. Observe first of all that the definition is
connect, since from Euler’s theorem we have n|a?(™ — 1, so such numbers d
indeed exist. In what follows we will denote by o0, (a) the order of @ modulo
n. The following properties hold:

1) If a™ =1 (mod n), then o, (a)|m;

2) on(a)|p(n);

3) If a' = @™ (mod n), then I =m (mod o,(a)).

In order to prove property 1) let us consider d = o,(a). Indeed, because
nla™ — 1 and n|a® — 1, we find that n|a9°4™4) — 1. But from the definition
of d it follows that d < ged(m,d), which cannot hold unless d|m.

The positive integer a is called a primitive root modulo n if we have
ged(a,n) = 1 and o,(a) = @(n). One can show that there are primitive
roots modulo n if and only if n € {2,4,p%, 2p®}, where p > 3 is any prime
and « is any positive integer.

Problem 7.3.1. Prove that n|p(a™ — 1) for all positive integers a,n.

(Saint Petersburg Mathematical Olympiad)

Solution. What is 04n—1(a)? It may seem a silly question, since of course

0gn—1(a) = n. Using the observation in the introduction, we obtain exactly
nlp(a™ —1).
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Problem 7.3.2. Prove that any prime factor of the nth Fermat number
22" 41 is congruent to 1 modulo 2" 1. Show that there are infinitely many
prime numbers of the form 2"k 4+ 1 for any fized n.

Solution. Let us consider a prime p such that p|22n +1. Then p|22n+1 -1
and consequently o,(2)|27*1. This ensures the existence of a positive integer
k < n + 1 such that 0,(2) + 2*. We will prove that in fact & = n + 1.
The proof is easy. Indeed, if this is not the case, then 0,(2)[2" and so
p|2°7() — 1|22" — 1. But this is impossible, since p|22" + 1. Therefore, we
have found that 0,(2) = 2""! and we have to prove that 0,(2)[p — 1 to
finish the first part of the question. But this follows from the introduction.

The second part is a direct consequence of the first. Indeed, it is enough
to prove that there exists an infinite set of Fermat’s numbers (22"% 4+1),,, >4
any two relatively prime. Then we could take a prime factor of each such
Fermat’s number and apply the first part to obtain that each such prime
is of the form 2"k + 1. But not only it is easy to find such a sequence of
Fermat’s coprime numbers, but in fact any two different Fermat’s numbers
are relatively prime. Indeed, suppose that d|gcd(22" + 1, 22"t 4 1). Then
d|22"+1 —1 and so d|22n+k — 1. Combining this with d|22n+k + 1, we obtain
a contradiction. Hence both parts of the problem are solved.

Problem 7.3.3. For a prime p, let fy(z) = 2P~ ' +2P~2 + .-+ 2+ 1.

a) If plm, prove that there exists a prime factor of f,(m) that is relatively
prime with m(m — 1).

b) Prove that there are infinitely many numbers n such that pn + 1 is

prime.
(2003 Korean IMO Team Selection Test)

Solution.

a) is straightforward. In fact, we will prove that any prime factor of
fp(m) is relatively prime with m(m — 1). Take such a prime divisor g.
Because q|1 +m + --- + mP~L it is clear that ged(q, m) = 1. Moreover, if
ged(g,m—1) # 1, then glm —1 and because q|1+m+---+mP~L it follows
that g|p. But p|m and we find that g|m, which is clearly impossible.

More difficult is b). But we are tempted to use a) and to explore the
properties of f,(m), just like in the previous problem. So, let us take a
prime g¢|fp(m) for a certain positive integer m divisible by p. Then we
have of course g|mP — 1. But this implies that o,(m)|g and consequently
oq(m) € {1,p}. If o4(m) = p, then ¢ = 1 (mod p). Otherwise, ¢|m —
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1 and because g|f,(m), we deduce that ¢|p, hence ¢ = p. But we have
seen while solving a) that this is not possible, so the only choice is p|lg —
1. Now, we need to find a sequence (my)r>1 of multiples of p such that
fp(my) are pairwise relatively prime. This is not as easy as in the first
example. Anyway, just by trial and error, it is not difficult to find such
a sequence. There are many other approaches, but we like the following
one: take mi = p and my = pf(m1)fp(m2) ... fp(mir_1). Let us prove that
fp(my) is relatively prime to fp(m1), fp(m2),..., fp(mg—1). Fortunately,
this is easy, since fp(m1)fp(m2) ... fp(mr—1)|fp(mr) — fp(0)|fp(my) — 1.
The solution ends here.
Problem 7.3.4. Find the smallest number n with the property that

22005|17n _ 1

Solution. The problem actually asks for 0,205 (17). We know that
092005 (17)]p(22005) = 22004 55 052005 (17) = 2%, where k € {1,2,...,2004}.
The order of an element has done its job. Now, it is time to work with
exponents. We have 22OO5|172k — 1. Using the factoring

2)971

17 1= (17— DA+ DA +1)... A7 +1),

we proceed by finding the exponent of 2 in each factor of this product. But
this is not difficult, because for all 7 > 0 the number 172 + 1 is a multiple
of 2, but not a multiple of 4. Thus, 1)2(172k — 1) = 4+ k and the order is
found by solving the equation k +4 = 2005. Thus, 052005 (17) = 22001 is the
answer to the problem.

Problem 7.3.5. Find all prime numbers p,q such that p? + 1|2003% + 1
and % + 1]20037 + 1.

Solution. Let us suppose that p < ¢q. We discuss first the trivial case
p = 2. In this case, 5|2003? 4+ 1 and it is easy to deduce that ¢ is even,
hence ¢ = 2, which is a solution of the problem. Now, suppose that p > 2
and let r be a prime factor of p? + 1. Because 7|20032¢ — 1, it follows
that 0,(2003)|2¢. Suppose that (g,0,(2003)) = 1. Then 0,(2003)|2 and
7|2003%2 —1 = 23 .3 -7-11-13 - 167. It seems that this is a dead end,
since there are too many possible values for r. Another simple observation
narrows the number of possible cases: because 7|p? + 1, must be of the form
4k+1 or equal to 2 and now we do not have many possibilities: r € {2,13}.
The case r = 13 is also impossible, because 20037 + 1 = 2 (mod 13) and
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720037+ 1. So, we have found that for any prime factor r of p?+ 1, we have
either 7 = 2 or ¢|o,(2003), which in turn implies g|r — 1. Because p? + 1
is even, but not divisible by 4 and because any odd prime factor of it is
congruent to 1 modulo ¢, we must have p?> + 1 = 2 (mod ¢). This implies
that p> + 1 =2 (mod q), that is ¢|(p — 1)(p + 1). Combining this with the
assumption that p < ¢ yields ¢|p 4+ 1 and in fact ¢ = p + 1. It follows that
p = 2, contradicting the assumption p > 2. Therefore the only pair is (2,2).

Proposed problems

Problem 7.3.6. Find all ordered triples of primes (p, ¢, r) such that
plg" +1,q/r" + 1,7p? + 1.
(2003 USA IMO Team Selection Test)

Problem 7.3.7. Find all primes p, g such that pg|2P + 29.
Problem 7.3.8. Prove that for any positive integer n, 3" — 2

" is not

divisible by n.
Problem 7.3.9. Find all positive integers m,n such that n|l 4+ m3" +

n
m23",

(Bulgarian IMO Team Selection Test)

Problem 7.3.10. Let a,n > 2 be positive integers such that n|a" ! — 1
and n does not divide any of the numbers a® — 1, where z < n — 1 and
x|n — 1. Prove that n is a prime number.

Problem 7.3.11. Find all prime numbers p, g for which the congruence

a*P = a  (mod 3pq)
holds for all integers «.

(1996 Romanian Mathematical Olympiad)
7.4 Wilson’s Theorem
Theorem 7.4.1. (Wilson?’s Theorem) For any prime p, p|(p — 1)! + 1.

2 John Wilson (1741-1793), English mathematician who published this results without

proof. It was first proved by Lagrange in 1773 who showed that the converse is also true.
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Proof. The property holds for p = 2 and p = 3, so we may assume that
p>5.Let S={2,3,...,p—2}. For any h in S, the integers h,2h, ..., (p—
1)h yield distinct remainders when divided by p. Hence there is a unique
R € {1,2,...,p — 1} such that hh/ = 1 (mod p). Moreover, b’ # 1 and
h' # p—1, hence b’ € S. In addition, k' # h, otherwise h? = 1 (mod p),
implying p|h — 1 or p|h+ 1, which is not possible, since h+1 < p. It follows
distinct pairs (h,h’) such
that hh’ = 1 (mod p). Multiplying these congruences gives (p — 2)! = 1

that we can group the elements of S in b

(mod p) and the conclusion follows. O
Remark. The converse is true, that is if n|(n — 1)! + 1 for an integer
n > 2, then n is a prime. Indeed, if n were equal to nins for some integers
ny,ng > 2, we would have n1|1-2...n1...(n—1)4+1, which is not possible.
Problem 7.4.1. If p is an odd prime, then the remainder when (p — 1)!
is divided by p(p — 1) is p — 1.
Solution. We need to show that (p — 1) =p —1 (mod p(p — 1)).
From Wilson’s Theorem we obtain (p—1)!—(p—1) =0 (mod p). Because
p—D!'—=(p—1)=0 (mod p—1) and ged(p,p— 1) =1 we get

(= =(p-1)=0 (modp(p—1)).

Problem 7.4.2. Let p be an odd prime and a1,az,...,a, an arithmetic
sequence whose common difference is not divisible by p. Prove that there is
ani € {1,2,...,p} such that a; + ajas...a, =0 (mod p?).

Solution. Note that a;, as, ..., a, give distinct remainders when divided
by p. Take i such that a; =0 (mod p). It follows that

w =(p-1)! (mod p).
From Wilson’s Theorem, we have (p — 1)! = —1 (mod p) and the con-

clusion follows.
Problem 7.4.3. Let a and n be positive integers such that n > 2 and
gcd(a,n) = 1. Prove that

a" '+ (n—-1)!'=0 (modn)

if and only if n is a prime.

Solution. If n is a prime the conclusion follows from Fermat’s Little
Theorem and Wilson’s Theorem.

For the converse, assume by way of contradiction that n = nins, where
niy > ng > 2.
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Because n|a"~! + (n — 1)!, it follows that ni|a®~! + (n — 1)!, that is
nila™"!, contradicting the hypothesis gcd(a,n) = 1.
Problem 7.4.4. If p is an odd prime, then for any positive integer n < p,

(n=Dlp—n)=(-1)" (mod p).

Solution. From Wilson’s Theorem, (p — 1)! = —1 (mod p), hence
(n—=1nn+1)...(p—1)=—-1 (mod p).
This is equivalent to
m=Dp—(p—-—n)p-pP-n-1)...(p—1)=-1 (mod p).
But p— k= —k (mod p), k=1,2,...,p —n, hence
(n—DI(=1P"(p—n) = —1 (mod p),

and taking into account that p is odd, the conclusion follows.

Proposed problems
Problem 7.4.5. Let p be an odd prime. Prove that

p+1
2

12.32...(p—2)%*=(-1) (mod p)

and
2242 . (p—1)2= (—l)pTJrl (mod p).

Problem 7.4.6. Show that there do not exist nonnegative integers k
and m such that k! + 48 = 48(k + 1)™.

(1996 Austrian-Polish Mathematics Competition)

Problem 7.4.7. For each positive integer n, find the greatest common
divisor of n! + 1 and (n + 1)!.

(1996 Irish Mathematical Olympiad)

Problem 7.4.8. Let p > 3 be a prime and let ¢ be a permutation of
{1,2,...,p— 1}. Prove that there are i # j such that plio(i) — jo(j).

(1986 Romanian IMO Team Selection Test)
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8

Diophantine Equations

8.1 Linear Diophantine equations

An equation of the form

PR 1)
where a1, as, ..., an, b are fixed integers, is called linear Diophantine' equa-
tion. We assume that n > 1 and that coefficients aq, ..., a, are all different

from zero.
The main result concerning linear Diophantine equations is the following:
Theorem 8.1.1. The equation (1) is solvable if and only if

ged(ay, ... an)|b.

In case of solvability, all integer solutions to (1) can be expressed in terms
of n — 1 integral parameters.

Proof. Let d = gcd(aq, ..., a,).

If b is not divisible by d, then (1) is not solvable, since for any integers
Z1,...,%, the left-hand side of (1) is divisible by d and the right-hand side

is not.

! Diophantus of Alezandria (about 200 - about 284), Greek mathematician sometimes
known as ”the father of algebra” who is the best known for his book ” Arithmetica”. This

had an enormous influence on the development of number theory.
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If d|b, then we obtain the equivalent equation
ayzy + - +ax, =V,

where a, = a;/d for i = 1,...,n and ¥ = b/d. Clearly, we have
ged(al,...,al) =1.

We use induction on the number n of the variables. In the case n = 1
the equation has the form x7; = b or —x; = b, and thus the unique solution
does not depend on any parameter.

Actually, we need to prove that ged(x1,x2,...,2,) is a linear combina-
tion with integer coefficients of z1,xo,...,z,. For n = 2 this follows from

Proposition 1.3.1. Since

ged(zy, ..., xy) = ged(ged(za, ..., Tp—1), Tn),

we obtain that ged(z1,...,z,) is a linear combination of =z, and
ged(x1, ..., 2n—1), thus by induction hypothesis, a linear combination of
TlyeeeysTp_1,Tn. O

Corollary 8.1.2. Let ay, ay be relatively prime integers. If (29,29) is a
solution to the equation

a1r1 + asxe = b, (2)

then all of its solutions are given by

T = x(l) + ast
T = xg — aqt

where t € 7.
Example. Solve the equation

3z + 4y + 52 = 6.

Solution. Working modulo 5 we have 3z 4+ 4y =1 (mod 5), hence
3r+4y=1+5s, seZ.

A solution to this equation is x = —1 4 3s, y = 1 — s. Applying (3) we
obtain xt = —14+3s+4t, y =1 — s — 3t, t € Z, and substituting back into

the original equation yields z = 1 — s. Hence all solutions are

(x,y,2) =(—1+4+3s+4t,1—s—3t,1—5s), s,teZ.
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Problem 8.1.1. Solve in nonnegative integers the equation

r+y+z+ayz=ay+yz+ zx+ 2.

Solution. We have
xyz — (zy+yz+zz)+z+y+z—-1=1,

and, consequently,
(x—Dy-1)(-1) =1

Because z,y, 2z are integers, we obtain
r—1l=y—-1=z—-1=1,

sor=y=2z=2.
Problem 8.1.2. Find all triples (x,y, z) of integers such that

2y —2) +y’(z —a) + 22z —y) = 2.

Solution. The equation is equivalent to

(z—y)z—2)(y—2) =2

Observe that (z —y) + (y — z) =  — z. On the other hand, 2 can be
written as a product of three distinct integers in the following ways

2= (-1)-(-1)-2,

ii)2=1-1-2,

i) 2 = (—=1)-1-(=2).

Since in the first case any two factors do not add up to the third, we

only have three possibilities:

r—y=1

a){ z—2=2 so (v,y,2) = (k+ 1,k k—1) for some integer k;
y—z=1
T—y=-—2

b){ z—2z=-1 so (z,y,2) = (k—1,k+1,k) for some integer k;
y—z=1
r—y=1

¢) z—z=-1 so(z,y,z)=(k,k—1,k+1) for some integer k.
y—z=—2.
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Problem 8.1.3. Let p and q be prime numbers. Find all positive integers
x and y such that

Solution. The equation is equivalent to

(z — pg)(y — pa) = p*¢*.

We have the cases:

z—pg=1,y—pg=p>¢* sox=1+pq y=pql+pqg).
2) & —pg=p,y—pg=pg* sox=pl+q),y=pgl+q).
3)x—pqg=q,y—pq=p°q sox=q(l+p),y=pgl+p).
4 x—pg=p*y—pg=q* sox=plp+q),y=qlp+q).
5) x —pq = pq, y — pq = pq, s0 T = 2pq, y = 2pq.

The equation is symmetric, so we have also:

6) x =pq(1 +pq), y=1+pq.

)z =pe(l+q), y=pl+q).

8) z =pq(1+p), y=q(l+p).

9) z=q(l1+q), y=pp+q).

Proposed problems

Problem 8.1.4. Solve in integers the equation
(@ + 1)y + 1)+ 2(z — y)(1 — zy) = 4(1 + zy).

Problem 8.1.5. Determine the side lengths of a right triangle if they
are integers and the product of the legs’ lengths equals three times the

perimeter.
(1999 Romanian Mathematical Olympiad)

Problem 8.1.6. Let a,b and ¢ be positive integers, each two of them
being relatively prime. Show that 2abc — ab — bc — ca is the largest integer
which cannot be expressed in the form zbc + yca + zab where z,y and z
are nonnegative integers.

(24" IMO)



8.2. QUADRATIC DIOPHANTINE EQUATIONS 161

8.2 Quadratic Diophantine equations
8.2.1 Pythagorean equation

One of the most celebrated Diophantine equation is the so-called

Pythagorean equation

2ty =2 1)

Studied in detail by Pythagoras? in connection with the right-angled tri-
angles whose sidelengths are all integers, this equation was known even to
the ancient Babylonians.

Note first that if the triple of integers (xq, yo, 2z0) satisfies the equation
(1), then all triples of the form (kxo, kyo, kz0), k € Z, also satisfy (1). That
is why it is sufficient to find solutions (z,y, z) to (1) with ged(x,y, z) = 1.
This is equivalent to the fact that x,y, z are pairwise relatively prime.

A solution (zo, Yo, z0) to (1) where g, yo, 20 are pairwise relatively prime
is called primitive solution.

Theorem 8.2.1. Any primitive solution (x,y,z) in positive integers to
the equation (1) is of the form

r=m?—n% y=2mn, z=m?+n? (2)

where m and n are relatively prime positive integers such that m > n.
Proof. The integers  and y cannot be both odd, for otherwise

2 =2+y*=2 (mod 4),

a contradiction. Hence exactly one of the integers x and y is even.
The identity

(m? —n?)% + (2mn)? = (m? + n?)?

shows that the triple given by (2) is indeed a solution to the equation (1)
and y is even.
Moreover, if ged(x,y,z) = d > 2, then d divides

2m? = (m? +n?) + (m* — n?)

2 Pythagoras of Samos (about 569BC - about 475BC), Greek philosopher who made
important developments in mathematics, astronomy, and the theory of music. The the-
orem now known as Pythagoras’s theorem was known to Babylonians 1000 years earlier

but he may have been the first to prove it.
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and d divides
2

2n? = (m? +n?) — (m? — n?).

Since m and n are relatively prime it follows that d = 2. Hence m? + n?
is even, in contradiction with m odd and n even. It follows that d = 1, so
the solution (2) is primitive.

Conversely, let (z,y, z) be a primitive solution to (1) with y = 2a. Then
x and z are odd and consequently the integers z + x and z — = are even.
Let z 4+ 2 = 2b and z — x = 2¢. We may assume that b and c are relatively
prime, for otherwise z and & would have a nontrivial common divisor. On
the other hand, 4a® = y% = 22 — 22 = (2 + 2)(2 — x) = 4bc, i.e. a? = be.

2

Since b and c are relatively prime, it follows that b = m? and ¢ = n? for

some positive integers m and n. We obtain

t=b—c=m?—n? y=2mn, z=b+c=m>+n ([

A triple (z,y, 2) of the form (2) is called a Pythagorean triple.

In order to list systematically all the primitive solutions to the equation
(1), we assign values 2,3,4,...for the number m successively and then for
each of these values we take those integers n which are relatively prime to
m, less than m and even whenever m is odd.

Here is the table of the first twenty primitive solutions listed according

to the above-mentioned rule.

m|n y | z | area min| x| vy z | area
211131415 6 7|16|13| 84 | 8 | 546
3125 12|13 ] 30 8§ 1]63| 16 | 65 | 504
411|158 (17| 60 8 |3 (55| 48 | 73 | 1320
4 13| 7 (24(25| &4 8 |5(39] 80 | 89 | 1560
512121120129 210 8 | 7|15 (112|113 | 840
5(141]9 |40 |41 180 9 277 36 | 8 | 1386
6 |1|35(12|37]| 210 9 14165| 72 | 97 | 2340
6 |5 |11]60|61]| 330 9 | 817|144 | 145 | 1224
7 12(45]28 |53 630 101 1{99( 20 | 101 | 990
714335665 924 1013191 60 | 109 | 2730

Corollary 8.2.2. The general integral solution to (1) is given by

r=k(m?*—n?), y=2kmn, z=k(m?+n?), (3)
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where k,m,n € Z.
Problem 8.2.1. Solve the following equation in positive integers

22 +y? =1997(x — y).

(1998 Bulgarian Mathematical Olympiad)

Solution. The solutions are
(z,y) = (170, 145) or (1827, 145).
We have
z? 4+ y? = 1997(z — y)
2(x? +y?) =2 x 1997(x — y)
22y (PP —2x1997(z —y)) =0
(@ +y)? + ((z —y)* —2x 1997(x —y)) = 0
(z+y)% + (1997 — z + y)? = 19972
Since x and y are positive integers, 0 < x +y < 1997 and 0 < 1997 —z +
y < 1997. Thus the problem reduces to solving a? + b*> = 19972 in positive
integers. Since 1997 is a prime, ged(a,b) = 1. By Pythagorean substitution,

there are positive integers m > n such that ged(m,n) =1 and

1997 =m? +n?, a=2mn, b=m?—n’

Since m?,n? = 0,1,—1 (mod 5) and 1997 = 2 (mod 5), m,n = *1
(mod 5). Since m?,n* = 0,1 (mod 3) and 1997 = 2 (mod 3), m,n = +1
(mod 3). Therefore m,n = 1,4,11,14 (mod 15). Since m > n, 1997/2 <
m? < 1997. Thus we only need to consider m = 34, 41, 44. The only solution
is (m,n) = (34,29). Thus

(a,b) = (1972, 315),

which leads to our final solutions.

Proposed problems

Problem 8.2.2. Find all Pythagorean triangles whose areas are numer-
ically equal to their perimeters.

Problem 8.2.3. Prove that for every positive integer n there is a positive
integer k such that k appears in exactly n nontrivial Pythagorean triples.

(American Mathematical Monthly)
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8.2.2 Pell’s equation
A special quadratic equation is
u? — Dv? =1 (1)

where D is a positive integer that is not a perfect square. Equation (1) is
called Pell’s equation and it has numerous applications in various fields
of mathematics. We will present an elementary approach to solving this
equation, due to Lagrange.

Theorem 8.2.3. If D is a positive integer that is not a perfect square,
then the equation (1) has infinitely many solutions in positive integers and

the general solution is giwen by (Un,Vn)n>1,
Unt1 = UoUp + DUV, Upt1 = Vol + UoUn, UL =Ug, V1 =17y (2)

where (ug,vo) is its fundamental solution, i.e. the minimal solution different
from (1,0).

Proof. First, we will prove that the equation (1) has a fundamental
solution.

Let ¢; be an integer greater than 1. We will show that there exist integers
t1,wy; > 1 such that

1
‘tl—wlvD|<C—, wi < C1.
1

Indeed, considering I, = [kv/D + 1], k = 0,1,...,¢1, yields 0 < I}, —
kvVD <1,k =0,1,...,c1, and since v/D is an irrational number, it follows
that I # I whenever k' # k.

There exist 7, j,p € {0,1,2,...,¢1}, 7 # j, p # 0, such that

-1 -1
P cl,—ivD<®2 and =< —jvD< L
C1 C1 C1 C1
-1
because there are ¢; intervals of the form (p , 2) ,p=0,1,...,¢; and
C1 C1

c1 4+ 1 numbers of the form I — kv D, k=0,1,...,¢1.
1
From the inequalities above it follows that |(l; — ;) — (j — )V D] < —
C1
1
and setting |l; — [;| = t; and |j — i| = wy yields [t; — w1V D] < — and

C1
w1 § Cq.

3 John Pell (1611-1685), English mathematician best known for ”Pell’s equation”
which in fact he had litlle to do with.
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Multiplying this inequality by t; + w1V D < 2w;vD + 1 gives

1
2 — Du?| < 2°2VD + — < 2VD + 1.
C1 C1
. P 1
Choosing a positive integer c¢a > ¢; such that |t — w1V D| > —, we

C2

obtain positive integers ts, we with the properties
t2 — Dw| <2VD+1 and |t — to] + |wy — wal # 0.

By continuing this procedure, we find a sequence of distinct pairs
(tn, wn)n>1 satisfying the inequalities [t2 — Dw?| < 2v/D + 1 for all posi-
tive integers n. It follows that the interval (—2v/D — 1,2v/D + 1) contains
a nonzero integer k such that there exists a subsequence of (¢, wn)n>1
satisfying the equation ¢ — Dw? = k. This subsequence contains at least
two pairs (ts,ws), (t-,w,) for which ts = ¢,.(modl|k|), ws = w,(mod|k|),
and tsw, — t,ws # 0, otherwise t; = ¢, and ws = w,, in contradiction with
[ts — tr] + |ws — wy| # 0.

Let tg = tst, — Dwsw, and let wg = tsw, — t,ws. Then

ts — Dwg = k*. (3)

On the other hand, ¢y = tst, — Dwsw, = t2 — DwZ = 0(mod|k|), and it
follows immediately that wo = 0(mod|k|). The pair (¢,w) where to = t|k|
and wy = wlk| is a nontrivial solution to equation (1).

We show now that the pair (u,,v,) defined by (2) satisfies Pell’s equation
(1). We proceed by induction with respect to n. Clearly, (uo, vo) is a solution

to the equation (1). If (w,,v,) is a solution to this equation, then
2 2 _ 2 2 _
Uy — Dy, = (uotn + Dvovn)” — D(votn + ugvn)” =

= (u — Dvg)(up, — Dvj) =1,

i.e. the pair (t,41,vn+1) is also a solution to the equation (1).
It is not difficult to see that for all positive integer n,

Un—1 + Vp—1VD = (ug +voVD)™. (4)

Let zp, = Up_1 + vn_1VD = (up + UO\/E)" and note that z; < 29 <
<o < zp < .... We will prove now that all solutions to the equation (1)
are of the form (4). Indeed, if the equation (1) had a solution (u,v) such
that z = w + vv/D is not of the form (4), then z,, < z < zp4+1 for some
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integer m. Then 1 < (u+vVD)(Upm — vm VD) < ug + 9V D, and therefore
1 < (uty, — Dvvg,) + (umv — uvm)\/ﬁ < ug 4+ vov/D. On the other hand,
(W, — Dvvy)? — D(upmv — uvy,)? = (u? — Dv?)(u2, — Dv2) = 1, ie.
(uttyy, — DV, v — Uy, ) is a solution of (1) smaller than (ug,vp), in
contradiction with the assumption that (ug,vp) was the minimal one. [

Remarks. 1) The relations (1) could be written in the following useful

Unt1 |\ [ uwo Dug Uy
vns1 )\ w0 uo U
Up, ug Dug " Up
Un Vo Uug Vo
U DUO " - (07 bn
Vo Ug N cn dp

then it is well-known that each of a,, b, c,,d, is a linear combination of

matrix form
from where

If

() D'Uo

T, Ay, where A1, A2 are the eigenvalues of the matrix . By

Vo ()
using (5) after an easy computation it follows that

Uy, = %[(UO + Uo\/ﬁ)n + (up — UO\/B)RL

(6)

[(uo + 00V D)™ — (ug — v0vVD)"]

1
Vyy =
" 2VD
2) The solutions to Pell’s equation given in one of the forms (4) or (6)
may be used in the approximation of the square roots of positive integers
that are not perfect squares. Indeed, if (u,,v,) are the solutions of the
equation (1), then

1
Up, —vn\/ﬁz _—
un—i—vn\/ﬁ

and so

Uu 1 1 1
Un _ /D < < —.
Un On(Un +voV/D)  V/Dv2 2

It follows that
lim 22 = /D, (7)

n—0o0 Uy,

U 1
i.e. the fractions — approximate v/ D with an error less than —-

n n
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Problem 8.2.4. Consider the sequences (un)n>1, (Un)n>1 defined by
up =3, v1 = 2 and Upy1 = 3Up + AUy, Unt1 = 2Up + 3v,, n > 1. Define
Tp = Up +Vn, Yn = Up +2v0,, n > 1. Prove that y, = [xn\/i] foralln > 1.

Solution. We prove by induction that

u? =202 =1, n>1. (1)

For n = 1 the claim is true. Assuming that the equality is true for some
n, we have

uZ g — 2021 = (Bup +4v,)? — 2(2up + 3v,) = ul — 202 =1

hence (1) is true for all n > 1.
We prove now that
202 —y2 =1, n>1 (2)

Indeed,
202 — y2 = 2(up + vp)? — (Up + 20,)? = Ul — 202 =1,
as claimed. It follows that
(:cn\/i— yn) (mn\/iJr yn> =1, n>1
Notice that z,v2 + Yn > 1 s0
0<z,V2—y, <1, n>1

Hence y,, = [mn\/i], as claimed.

Problem 8.2.5. Show that there exists infinitely many systems of pos-
itive integers (x,y, z,t) which have no common divisor greater than 1 and
such that

2+’ + 2=t

(2000 Romanian IMO Team Selection Test)
First Solution. Let consider the identity:
P+22 4+ (n=2°+(n—1)>+n= <7

We may write it under the form:

(1P 4t ((n—1)2(n—2))2 _ <n(n+1)>2_
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It is sufficient to find positive integers n for which is a perfect

(n+1)
2

square. Such a goal can be attained.
Let us remark that the equality

(2n+1)2-222)% =1

can be realized by taking the solutions (ux,vy) of the Pell equation u? —

20?2 =1, where ug = 3, vg = 2 and ug, vi, are obtained from the identity:
(uo + ﬁvo)k(uo - \/51;0)’“ = (uy + ﬁvk)(uk - \/§'Uk) =1
Alternative Solution. Let consider the following identity:
(a+1)*— (a—1)* = 8a® + 8a,

where a is a positive integer. Take a = b3, where b is an even integer

number. From the above identity one obtains:
(0% + 1)* = (26%)% + (2b)° + [(0° — 1)*)2.

Since b is even number, b 4+ 1 and b — 1 are odd numbers. It follows
that the numbers x = 2b, y = 2b, z = (b3 — 1) and t = b3 + 1 have no
common divisor greater than 1.

Proposed problems

Problem 8.2.6. Let p be a prime number congruent to 3 modulo 4.

Consider the equation
(p+2)a® = (p+1)y* +pr+(p+2y=1

Prove that this equation has infinitely many solutions in positive integers,
and show that if (z,y) = (o, o) is a solution of the equation in positive

integers, then p|xg.
(2001 Bulgarian Mathematical Olympiad)
Problem 8.2.7. Determine all integers a for which the equation
2 +azy+yi=1
has infinitely many distinct integer solutions (z,y).

(1995 Irish Mathematical Olympiad)
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Problem 8.2.8. Prove that the equation
a3 3+ 2% 13 = 1999
has infinitely many integral solutions.

(1999 Bulgarian Mathematical Olympiad)

8.2.3 Other quadratic equations

There are many other general quadratic equations that appear in con-
crete situations. Here is an example.
Consider the equation

ary +bxr +cy+d=0, (1)

where a is a nonzero integer and b, ¢, d are integers such that ad — bc # 0.
Theorem 8.2.4. If ged(a,b) = ged(a,c) = 1, then equation (1) is solv-
able if and only if there is a divisor m of ad — bc such that alm — b or
alm — c.
Proof. We can write (1) in the following equivalent form:

(az + ¢)(ay + b) = be — ad. (2)

If such a divisor m exists and a|m — ¢, then we take ax + ¢ = m and
ay + b =m', where mm’ = bc — ad. In order to have solutions it suffices to
show that a|m’—b. Indeed, the relation mm’ = bc—ad implies (ax+c)m’ =
bc—ad, which is equivalent to a(m’z+d) = —c(m’ —b). Taking into account
that ged(a,c) =1, we get alm’ —b.

The converse is clearly true. O

Remarks. 1) In case of solvability, equation (1) has only finitely many
solutions. These solutions depend upon the divisors m of ad — be.

2) If a does not divide b — ¢, then equation (1) is not solvable because
from the proof of the theorem it follows that conditions alm —b and a|m—c
are equivalent and, in case of solvability, they hold simultaneously. In this
case a¢ must divide (m —c¢) — (m —b) =b —c.

Example. Solve the equation

3zy+4x+T7y+6=0.

Solution. We have ad — bc = —10, whose integer divisors are —10, —5,
—2,—1,1, 2,5, 10. The conditions in Theorem 8.2.4 are satisfied only for
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m = —5, —2, 1, 10. We obtain the solutions (z,y) = (-4, —-2), (=3, -3),
(—2,2), (1, —1), respectively.
In what follows you can find several nonstandard quadratic equations.
Problem 8.2.9. For any given positive integer n, determine (as a func-

tion of n) the number of ordered pairs (x,y) of positive integers such that
z? —y? =107 - 307"
Prove further that the number of such pairs is never a perfect square.
(1999 Hungarian Mathematical Olympiad)

Solution. Because 102 -302" is even, x and y must have the same parity.

Then (z,y) is a valid solution if and only if (u,v) = (%w, a ; y) is

a pair of positive integers that satisfies v > v and uwv = 52 - 302". Now
52.30%" = 227 . 327 . 52"+2 has exactly (2n + 1)%(2n + 3) factors. Thus
without the condition u > v there are exactly (2n + 1)2(2n + 3) such pairs

(u,v). Exactly one pair has u = v, and by symmetry half of the remaining
pairs have u > wv. It follows that there are %((Zn +1)2@2n +3) 1) =
(n +1)(4n* + 6n + 1) valid pairs.

Now suppose that (n + 1)(4n? + 6n + 1) were a square. Because n + 1
and 4n? + 6n + 1 = (4n + 2)(n + 1) — 1 are coprime, 4n® + 6n + 1 must
be a square as well. However, (2n + 1)? < 4n? + 6n+ 1 < (2n + 2)?, a
contradiction.

Problem 8.2.10. Prove that the equation a4+ b = c¢? + 3 has infinitely

many integer solutions {a,b, c}.
(1996 Italian Mathematical Olympiad)

Solution. Let a be any odd number, let b = (a?—5)/2 and ¢ = (a®>—1)/2.
Then
& —b?=(c+b)(c—b)=a®—3.
Remark. Actually one can prove that any integer n can be represented

in infinitely many ways in the form a? + b2 — ¢? with a,b, c € Z.

Proposed problems

Problem 8.2.11. Prove that the equation

4y + 2243ty +2)+5=0
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has no solutions in rational numbers.
(1997 Bulgarian Mathematical Olympiad)
Problem 8.2.12. Find all integers z, y, z such that 522 — 14y? = 1122,
(2001 Hungarian Mathematical Olympiad)

Problem 8.2.13. Let n be a nonnegative integer. Find the nonnegative
integers a, b, ¢, d such that

A+ b+ +d? =74
(2001 Romanian JBMO Team Selection Test)
Problem 8.2.14. Prove that the equation
22 g2 4 22 (2 = 92000,
where 0 < z < y < z < t, has exactly two solutions in the set of integers.
(2004 Romanian Mathematical Olympiad)
Problem 8.2.15. Let n be a positive integer. Prove that the equation
1 1
rT+y+—+-—=3n
r Yy

does not have solutions in positive rational numbers.

8.3 Nonstandard Diophantine equations
8.3.1 Cubic equations

Problem 8.3.1. Find all pairs (x,y) of nonnegative integers such that
23+ 822 — 62 + 8 = ¢,

(1995 German Mathematical Olympiad)
Solution. Note that for all real x,
0<b52? -9+ 7= (2% +82% — 62 +8)— (z+1)>

Therefore if (z,y) is a solution, we must have y > x + 2. In the same
vein, we note that for x > 1,

0> —2?— 33z + 15 = (2% + 827 — 62+ 8) — (2 + 92 + 272 + 27).
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Hence we either have z = 0, in which case y = 2 is a solution, or > 1,
in which case we must have y = x 4 2. But this means

0= (2® +82% — 62+ 8) — (2% + 622 + 122 + 8) = 22% — 18x.

Hence the only solutions are (0,2), (9,11).
Problem 8.3.2. Find all pairs (x,y) of integers such that

3 =53 4297 + 1.

(1999 Bulgarian Mathematical Olympiad)

Solution. When y2 + 3y > 0, (y +1)® > 2% > y3. Thus we must have
y?+3y <0,andy = —3, =2, —1, or 0, yielding the solutions (z,y) = (1,0),
(1,—2), and (-2, -3).

Problem 8.3.3. Find all the triples (x,y,z) of positive integers such
that

Yy + yz + zx — xyz = 2.

Solution. Let z < y < z. We consider the following cases:
1) For x = 1, we obtain y + z = 2, and then

(#,y,2) = (1, 1,1).

2) If x = 2, then 2y + 2z — yz = 2, which gives (z — 2)(y — 2) = 2. The
solutions are z = 4, y = 3 or z = 3, y = 4. Due to the symmetry of the
relations the solutions (z,y, z) are

(2,3,4), (2,4,3), (3,2,4), (4,2,3), (3,4,2), (4,3,2).

3)Ifx >3,y >3, 2> 3 then xyz > 3yz, xyz > 3xz, vyz > 3zy. Thus
xy + 2z + yz — xyz < 0, so there are no solutions.

Problem 8.3.4. Determine a positive constant ¢ such that the equation
-y —r+y=c
has ezactly three solutions (x,y) in positive integers.

(1999 United Kingdom Mathematical Olympiad)



8.3. NONSTANDARD DIOPHANTINE EQUATIONS 173

Solution. When y = 1 the left-hand side is 0. Thus we can rewrite our

equation as
yly—1)+c
(y+1(y—1)

The numerator is congruent to —1(—2) + ¢ modulo (y + 1), and it is also

congruent to ¢ modulo (y — 1). Hence we must have ¢ = —2 (mod (y + 1))
and ¢ = 0 (mod (y — 1)). Because ¢ = y — 1 satisfies these congruences,
we must have ¢ =y — 1 (mod lem(y — 1,y + 1)). When y is even, lem(y —
1,y +1) =% —1; when y is odd, lem(y — 1,y + 1) = %(y2 —1).

Then for y = 2,3,11 we have ¢ = 1 (mod 3), ¢ = 2 (mod 4), ¢ = 10
(mod 60). Hence, we try setting ¢ = 10. For = to be an integer we must
have (y — 1)|10 = y = 2,3,6, or 11. These values give x = 4,2, ;, and
1, respectively. Thus there are exactly three solutions in positive integers,
namely (z,y) = (4,2), (2,3), and (1,11).

Proposed problems

Problem 8.3.5. Find all triples (x,y, z) of natural numbers such that y

is a prime number, y and 3 do not divide z, and 2® — 3% = 22.

(1999 Bulgarian Mathematical Olympiad)
Problem 8.3.6. Find all the positive integers a, b, ¢ such that
a® 4+ b% + ¢ = 2001.
(2001 Junior Balkan Mathematical Olympiad)
Problem 8.3.7. Determine all ordered pairs (m,n) of positive integers
such that

nd+1
mn — 1

is an integer.

(35" IMO)

8.3.2 High-order polynomial equations

Problem 8.3.8. Prove that there are no integers x,y,z so that

2t byt 2t 20%y? — 29222 — 22222 = 2000.
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Solution. Suppose by way of contradiction that such numbers exist.
Assume without loss of generality that x,y, z are nonnegative integers.

At first we prove that the numbers are distinct. For this, consider that
y = z. Then z* — 42%y? = 2000, hence z is even.

Setting x = 2t yields t?(t> — y?) = 125. It follows that t> = 25 and
y? = 20, a contradiction.

Let now = > y > z. Since x* +y*+ 2% is odd, at least one of the numbers

x,y, z is even and the other two have the same parity. Observe that
ot 4yt 4 2 — 22%y% — 2y%2% — 22222
= (22 — y?)2 — 2(a? — y?)22 + 2% — dy?2?
= (2% —y? — 2% = 2y2) (2 — y* — 2% + 2y2)

=(@+ty+2)(@-—y—2)(z-y+2)(z+y-2),

each of the four factors being even. Since 2000 = 16-125 = 24.125 we deduce
that each factor is divisible by 2, but not by 4. Moreover, the factors are
distinct

r+y+z>rt+y—z>r—y+z>r—y—=2.

The smallest even divisors of 2000 that are not divisible by 4 are 2, 10,
50, 250. But 2-10 - 50 - 250 > 2000, a contradiction.
Problem 8.3.9. Find the smallest value for n for which there exist the

positive integers Ti, ..., T, with

]+ + -+ at =1998.

Solution. Observe that for any integer z we have z* = 16k or 2* =
16k + 1 for some k.

As 1998 = 16 - 124 + 14, it follows that n > 14.

If n = 14, all the n}llmbers T1,%o,...,T14 must be odd, so let x% =
16ay + 1. Then ay = xklg 1, k = 1,14 hence a; € {0,5,39,150,...} and
ap + az + -+ + aig = 124. It follows that ax € {0,5,39} for all k = 1,14,
and since 124 = 5 - 24 + 4, the number of the terms ax equal to 39 is 1 or

at least 6. A simple analysis show that the claim fails in both cases, hence
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n > 15. Any of the equalities

1998 = 5% + 5%+ 3%+ 3+ 3 + 31+ 31+ 31+ 31+ 31 + 31+ 2¢
+1t 41t 1t
=545+ 4" +31 434 + 3" + 3" + 31 4+ 3
SIS R R R
proves that n = 15.
Problem 8.3.10. Find all integer and positive solutions (x,y, z,t) of the

equation
(+y)(y+2)(z+ ) =teyz

such that (z,y) = (y,2) = (z,2) = 1.
(1995 Romanian Mathematical IMO Team Selection Test)

Solution. It is obvious that (z,z + y) = (z,2 + z) = 1, then = divides
Yy + z, y divides z 4+ x and z divides = + y. Let a,b, and ¢ be integers such
that

Tr+1Yy=cz
Yy+z=ax
z4+x =by.

We may assume that x > y > z. If y = z, then y = z = 1 and then
x e {1,2}. If x =y, then x =y = 1 and z = 1. So, assume that z > y > z.
Since a = ytz < 2, we have a = 1 and & = y + z. Thus, y|y + 2z and
y|2z. Since yx> z,y = 2z and since ged(y,z) = 1, one has z = 1, y = 2,
x=3.

Finally the solutions are (1,1,1,8), (2,1,1,9), (3,2,1,10) and those ob-
tained by permutations of x, v, z.

Problem 8.3.11. Determine all triples of positive integers a, b, c such

that a®> + 1, b + 1 are prime and (a®? +1)(b%> +1) = ¢ + 1.
(2002 Polish Mathematical Olympiad)

Solution. Of course, we may assume that a < b. Since a?(b?> +1) = (¢ —
b)(c+b) and b*>+1 is a prime, we have b?>+1|c—b or b +1|c+b. If b +1|c—b,
then a2 > c+b > b%>+2b+ 1, impossible since a < b. So there is k such that
c+b = k(b?+1) and a? = k(b2+1)—2b. Thus, b> > k(b?+1)—2b > kb®—2b,
from where k < 2. If k = 2, then b? > 2b% — 2b + 2, thus (b—1)2 +1 < 0,
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false. Thus k = 1 and a = b— 1. But then >+ 1 and (b—1)?+ 1 are primes
and at least one of them is even, forcingb—1=1and b=2,a=1, c = 3.
By symmetry, we find (a,b,c) = (1,2,3) or (2,1, 3).

Proposed problems

Problem 8.3.12. Prove that there are no positive integers x and y such
that
® +y° +1=(z+2)°+ (y—3)°

Problem 8.3.13. Prove that the equation 42 = 2° — 4 has no integer

solutions.
(1998 Balkan Mathematical Olympiad)

Problem 8.3.14. Let m,n > 1 be integer numbers. Solve in positive
integers the equation
"ty =2m

(2003 Romanian Mathematical Olympiad)

Problem 8.3.15. For a given positive integer m, find all pairs (n, z,y) of
positive integers such that m, n are relatively prime and (2% +3%)™ = (zy)",

where n, x,y can be represented in terms of m.

(1995 Korean Mathematical Olympiad)

8.3.3 Exponential Diophantine equations

Problem 8.3.16. Find the integer solutions to the equation

9% — 37 = y' + 2y +y* + 2y.

Solution. We have successively
4((3%)? = 3") + 1 =4y* +8y> +4y* + 8y + 1,

then
(2t —1)2 = 4y* + 8y° + 4y + 8y + 1,

where 3% =t > 1 since it is clear that there are no solutions with z < 0.
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Observe that
(2% +2y)? < E < (2% + 2y + 1)2
Since E = (2t — 1)? is a square, then
E=(2y+2y+1)?

if and only if
4y(y —1) =0,

soy=0ory=1.

Ify=0thent=1and x =0.

Ify=1,thent =3 and z = 1.

Hence the solutions (z,y) are (0,0) and (1,1).

Problem 8.3.17. The positive integers x,y, z satisfy the equation 2z* =
y¥ + 2%. Prove that x =y = z.

(1997 St. Petersburg City Mathematical Olympiad)

Solution. We note that (z + 1)** > 2%+! + (2 4+ 1)2® > 22%. Thus we
cannot have y > x or z > x, else the right side of the equation will exceed
the left. But then 2z% > y¥ 4 2%, with equality if and only if z = y = 2.

Problem 8.3.18. Find all solutions in nonnegative integers x,y, z of the
equation

27 4 3V = 22,

(1996 United Kingdom Mathematical Olympiad)

Solution. If y = 0, then 2* = 22 —1 = (2 + 1)(2 — 1), so z + 1 and
z — 1 are powers of 2. The only powers of 2 which differ by 2 are 4 and 2,
so (z,y,2) = (3,0,3).

If y > 0, then taking the equation mod 3 it follows that z is even. Now
we have 3¥ = 22 — 27 = (z + 2%/2)(z — 2%/2). The factors are powers of 3,
say 24 2%/2 = 3™ and z — 2%/2 = 3" but then 3™ — 3" = 2%/2+1, Since the
right side is not divisible by 3, we must have n = 0 and

37" — 1 =27/

If x = 0, we have m = 1, yielding (x,y, z) = (0,1, 2). Otherwise, 3™ — 1
is divisible by 4, so m is even and 2%/2*1 = (3™/2 + 1)(3™/2 — 1). The two
factors on the right are powers of 2 differing by 2, so they are 2 and 4,
giving z =4 and (x,y,2) = (4,2,5).
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Proposed problems

Problem 8.3.19. Determine all triples (z, k, n) of positive integers such
that
3F—1=2za"

(1999 Italian Mathematical Olympiad)

Problem 8.3.20. Find all pairs of nonnegative integers = and y which
satisfy the equation
P -y’ =1
where p is a given odd prime.

(1995 Czech-Slovak Match)

Problem 8.3.21. Let z,y, z be integers with z > 1. Show that
(+ 12+ (x+2)°+- + (x+99)% #y°.
(1998 Hungarian Mathematical Olympiad)

Problem 8.3.22. Determine all solutions (z,y, z) of positive integers
such that
(x+ 1) +1=(z42)°.

(1999 Taiwanese Mathematical Olympiad)
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Some special problems in number
theory

9.1 Quadratic residues. Legendre’s symbol

Let a and m be positive integers such that m # 0 and ged(a, m) = 1. We
say that a is a quadratic residue mod m if the congruence 22 = a (mod m)
has a solution. Otherwise we say that a is a nonquadratic residue.

Let p be an odd prime and let a be a positive integer not divisible by p.
The Legendre’s symbol of a with respect to p is defined by

(a) ] 1 if a quadratic residue pmod p
p —1 otherwise

It is clear that the perfect squares are quadratic residues mod p. It is nat-
ural to ask how many integers among 1,2,...,p— 1 are quadratic residues.

The answer is given in the following theorem.

Theorem 9.1.1. Let p be an odd prime. There are L

quadratic
residues in the set {1,2,...,p— 1}.

Proof. Consider the numbers k%, k = 1,27...,10;1. These are
quadratic residues and moreover, they are distinct. Indeed, if i = ;2
(mod p), then it follows that p|(i — j)(i + j) and, since i + j < p, this

implies p|i — j, hence i = j.
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2

Conversely, if gcd(a,p) = 1 and the congruence z* = a (mod p) has a

solution z, then = = gp + i, where _p%l <i< p 3 and so i = ¢
(mod p). O
The basic properties of Legendre’s symbol are:
1) (Euler’s criterion) If p is an odd prime and @ an integer not divisible

o' = (%) (mod p).

2) If a = b (mod p), then (%) - (g)

3) (multiplicity) <¥) = (%) (%")

a
For Euler’s criterion, suppose that <—) = 1. Then i? = a (mod p) for

by p, then

D
some integer . We have ged(i,p) = 1 and from Fermat’s Little Theorem,

P~ =1 (mod p). Hence a7 =1 (mod p) and we are done.

()= —1, then each of the congruences
p—1 p—1
2 —1=0 (modp) and z = +1=0 (mod p)
p—1 . . _ p—1 .
has distinct solutions in the set {1,2,...,p—1}. The quadratic

-1
P nonquadratic

residues correspond to the first congruence and the
residues correspond to the second. Hence if a is nonquadratic residue, we
have a"z" = —1 (mod p) and we are done.

Remark. From Fermat’s Little Theorem, a?~! = 1 (mod p), hence
p|(a1[%1 - 1)(ap771 + 1). From Euler’s criterion, p\aprl — 1 if and only if
a is a quadratic residue mod p.

Property 2) is clear. For 3) we apply Euler’s criterion:

a; p-1
(—)Eai (mod p), i=1,...,n.
p

Therefore
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(-1
In order to prove 4) note that (—1)*=, (—) € {-1,1}. Hence
p

p|(—1)pT_1 - (%) reduces to Euler’s criterion.

The following theorem gives necessary and sufficient conditions under
which 2 is a quadratic residue.

Theorem 9.1.2. For any odd prime p,

(5)-cv

Proof. We need the following lemma.

Lemma. (Gauss') If a is a positive integer that is not divisible by p,

then from the Division Algorithm,

-1
ka=pqx +r,, k= 1"”7pT'
Let by, ..., b, be the distinct remainders r1, ..., Tpt that are less than
P and let cq,. .., c, be the distinct remaining remainders. Then

Proof of Lemma. We have

p=1 p=1
= : TR = : (ka—pqr) = ka=a"7 p_1 I (mod p).
= k=1 k=1 2

H:jg

-1
Because g <c¢i<p—-1,j=1,...,n,wehave 1 <p—¢; < pT It is
not possible to have p—c; = b; for some 7 and j. Indeed, if b; +c; = p, then

1
D = as—pgs+at —pqs, so p|s+t, which is impossible, since 1 < s,t < p_

Therefore the integers by,...,by,p —c1,...,p — ¢y, are distinct and

—1
{b1,...,bm,p — ,...,p—cn}:{l,Q,...,pT}

L Karl Friedrich Gauss (1777-1855), German mathematician who is sometimes called
the ”prince of mathematics”. Gauss proved in 1801 the fundamental theorem of arith-
metic and he published one of the most brilliant achievements in mathematics, ” Disqui-
sitiones Arithmeticae”. In this book he systematized the study of number theory and

developed the algebra of congruences.
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We obtain . .
p—1
T fTo o (25)
=1 j=1
Finally,
m n _ 1
(=" Hbi H ¢ = (pT)' (mod p)
=1 j=1
hence a”z" = (=1)™ (mod p). The conclusion now follows from Euler’s
criterion. O

In order to prove the theorem we use Gauss Lemma for a = 2. We have
r1,72,...,7p—1} = {2,4,...,p — 1}. The number of integers k£ such that
’ 2

g<2k<pisn:{§J—EJ. )
-1
If p = 4u+ 1, thenn:2u—u:uande = 2u® + u. We have

p°—1

n= (mod 2) and we are done.
2
-1
pr:4v—|—3,thenn:2v—|—1—v=v—|—1andp =202 +3v+1
p’-1
and again n = (mod 2). O

The central result concerning Legendre’s symbol is the so-called
Quadratic Reciprocity Law of Gauss.
Theorem 9.1.3. If p and q are distinct odd primes, then

() )-co

Proof. In Gauss Lemma we take a = ¢ and we get (%) = (—1)". Let
i b; = b and Zn: ¢j = c. Then using the equality
i=1 j=1
{b1,...,bm,p—c1,...,D—Cn} = {1,2,...,;07_1}
it follows that o
b+np—c:;k: p28_1'

k
But from Gauss Lemma we have g = {—QJ, k=1,2,...,p—1, hence
p

p—1
2 2
p-—1 kq
= E — b .
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Summing up the last two relations gives

& |kg| Pt
26+pZ{;J—|— 3 (1-¢q)—np=0.
k=1

Because 2c and 1 — ¢ are even, it follows that

e kq
n_; LDJ (mod 2)
and applying Gauss Lemma again we obtain
p=1
(g) _ s lE
p

Similarly, we derive the relation

(7)- (_DEL%J

Multiplying the last two equalities and taking into account the Landau’s
identity in Problem 18 of Chapter 3, the conclusion follows. (]

Problem 9.1.1. Let k = 22" + 1 for some positive integer n. Show that
k is a prime if and only if k is a factor of 3—1/2 4 1.

(1997 Taiwanese Mathematical Olympiad)

Solution. Suppose k is a factor of 3(*=1)/2 £ 1. This is equivalent to

3(k=1/2 = 1 (mod k). Hence 3*~! =1 (mod k). Let d be the order of 3
mod k. Then d{ (k—1)/2 but d|(k—1), hence (k—1)|d, so d =k —1 (since
d must be smaller than k). Therefore & is prime.

Conversely, suppose k is prime. By Quadratic Reciprocity Law

-0)-0-

By Euler’s criterion, 3(F=1)/2 = % = —1 (mod k), as claimed.

Problem 9.1.2. Prove that if n is a positive integer such that the equa-
tion x® — 3xy? + 3> = n has an integer solution (x,y) then it has at least
three such solutions.

(2374 IMO)
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Solution. The idea of the solution is to find a non-singular change of

coordinates with integer coefficients
(@,y) — (ax + by, cx + dy),

such that the polynomial 23 — 3zy? + > does not change after changing
coordinates. Such a transformation can be found after remarking the iden-
tity:

a® =3xy? +y° = (y —2)® = 32y + 22° = (y — ) = 3(y — )2® + (—x)*.

Thus, such a transformation is T'(z,y) = (y — x, —x). It can be repre-

sented like a linear transformation
T T\ _ -1 1 —x+y
y -1 0

-1 1 -1
-1 0 -1
0 -1 -1
1 -1 -1 '

—y,x — 7). Moreover, it is easy to see that if 2% —

We have

T? = <

and

T? = <

Thus, T%(z,y) = (
3xy? +y> = n, n > 0, then the pairs (z,y), (—y,z — y) are distinct.

For the second part, observe that 2819 = 72 - 59. Suppose that z,y are

integer numbers such that z® — 3zy? + 3> = 2891. Then z,y are pairwise

prime, because from d = (x,y) we obtain d*|2891. The numbers x, y are not
divisible by 7, then they are inversible modulo 7. Thus, from the equation

(g)?)_g(g)ﬁlzo (mod 7).

T

we obtain

This proves that the congruence
3 2 _
a®—3a*+1=0 (mod7)

has a solution, a € Z. Since 7 is not a divisor of a, by Fermat’s Little
Theorem one has a® = 1 (mod 7). There are two possibilities: a® = 1
(mod 7) or a® = —1 (mod 7). When a® =1 (mod 7) we obtain:

a®>-3a>+1=0 (mod7) = 3¢’=2 (mod7) = a>=3 (mod7).
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Using Legendre’s symbol and the Quadratic Reciprocity Law:

(B)-cr = () ()

This proves that 3 is not a square modulo 7. When a® = —1 (mod 7)
we obtain the contradiction from: 3a? = 0 (mod 7). Thus, the equation
23 — 3xy? + 3® = 2891 has no solution in integers (z,y).

Problem 9.1.3. Let m,n be positive integers such that

(m+3)"+1
3m

A =
is an integer. Prove that A is odd.
(1998 Bulgarian Mathematical Olympiad)

Solution. If m is odd, then (m + 3)™ + 1 is odd and A is odd. Now we
suppose that m is even. Since A is an integer,

0=(m+3)"+1=m"+1 (mod 3),

son = 2k+11isodd and m = —1 (mod 3). We consider the following cases.

(a) m = 8m/ for some positive integer m’. Then
(m+3)"+1=3*%"4+1=4 (mod 8)

and 3m =0 (mod 8). So A is not an integer.
(b) m = 2m/ for some odd positive integer m/, i.e., m =2 (mod 4). Then

m+3)"+1=(2+3)+1=2 (mod4)

and 3m =2 (mod 4). So A is odd.
(¢) m = 4m/ for some odd positive integer m’. Because m = —1 (mod 3),
there exists an odd prime p such that p = —1 (mod 3) and p|m. Since A

is an integer,
0=(m+3)"+1=3%"141 (modm)

and 3%**! = —1 (mod p). Let a be a primitive root modulo p; let b be a
positive integer such that 3 = a® (mod p). Thus a(?*tV% = —1 (mod p).
Note that (p/3) = (—1/3) = —1. We consider the following cases.

(i) p=1 (mod 4). From the Quadratic Reciprocity Law, (—1/p) = 1, so

2 = _q = g(2k+1)b

a”¢ = (mod p)
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for some positive integer c. Therefore b is even and (3/p) = 1. Again, from
the Quadratic Reciprocity Law,

—1=(3/p)(p/3) = (~1)B=DE-1/4 = 1

a contradiction.
(ii) p =3 (mod 4). From the Quadratic Reciprocity Law, (—1/p) = —1,
S0

a? = —1= a8 (mod p)

for some positive integer c. Therefore b is odd and (3/p) = —1. Again, from
the Quadratic Reciprocity Law,

1=(3/p)(p/3) = (=1)B-DE=D/4 — 1

a contradiction.

Thus for m = 4m’ and m’ is odd, A is not an integer.

From the above, we see that if A is an integer, A is odd.

Problem 9.1.4. Prove that 2™ 4+ 1 has no prime factors of the form
8k+ 7.

(2004 Vietnamese IMO Team Selection Test)

Solution. Assume that we have a prime p such that p|2"+1 and p = —1
-1

(mod 8). If n is even, then p = 3 (mod 4) and (—) = 1, a contradiction.
p

1 yd

_9 2_ _
If n is odd, then (—) = 1 and we get (—=1)*F (=1)*= = 1, again a
p
contradiction.
Problem 9.1.5. Prove that 2°" + 1 has at least n prime divisors of the

form 8k + 3.
Solution. Using the result of the previous problem, we deduce that 2"+1

does not have prime divisors of the form 8k + 7. We will prove that if n is
odd, then it has no prime divisors of the form 8k + 5 either. Indeed, let p
be a prime divisor of 2" + 1. Then 2" = —1 (mod p) and so —2 = (273" )2
(mod p). Using the same argument as the one in the previous problem, we

2
p—1 p—1
+
8

deduce that
8k + 5.
Now, let us solve the proposed problem. We will assume n > 2 (otherwise

is even, which cannot happen if p is of the form

the verification is trivial). The essential observation is the identity:

2" 1= 24122 -2+ 1)@ -2 +1)... (2% — 2 4 1)
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Now, we will prove that forall 1 <i<j<n-—1,

J

ged(223 =23 41,223 — 9% 4 1) =3.

Indeed, assume that p is a prime number dividing ged(223° — 23" +
1,223 — 23 4 1) We will then have p|23”" + 1. Thus,

29 =@ T = ()Y T =1 (mod p),

implying
0=22% —23'j+151—(—1)+153 (mod p).
This cannot happen unless p = 3. But since
v3(ged (223 — 23" +1,2%% — 9% L 1)) =1
(as one can immediately check), it follows that
ged(223 — 93" 11,928 _ 9% 1 1) =3

and the claim is proved.

It remains to show that each of the numbers 223" — 23" 4 1, withl1 <i<
n—1 has at least a prime divisor of the form 8%+ 3 different from 3. It would
follow in this case that 23" + 1 has at least n — 1 distinct prime divisors of
the form 8%+ 3 (from the previous remarks) and since it is also divisible by
3, the conclusion would follow. Fix i € {1,2,...,n — 1} and observe that
any prime factor of 223" — 23" + 1 is also a prime factor of 23" + 1 and thus,
from the first remark, it must be of the form 8% + 1 or 8k + 3. Because
U3 (22'3i —2% 4 1) =1, it follows that if all prime divisors of 923" _ 93" 41
except for 3 are of the form 8k+1, then 223 —23' +1 = 8 (mod 8), which is
clearly impossible. Thus at least a prime divisor of 22-3' — 23" 41 is different
from 3 and is of the form 8k + 3 and so the claim is proved. The conclusion
follows.

Problem 9.1.6. Find a number n between 100 and 1997 such that n|2"+
2.

(1997 Asian-Pacific Mathematical Olympiad)

Solution. The first step would be choosing n = 2p, for some prime
number p. Unfortunately this cannot work by Fermat’s little theorem. So

let us try setting n = 2pq, with p, ¢ different prime numbers. We need
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-2 -2

pq|22P9~1 + 1 and so we must have <— = [ — ) = 1. Also, using
p q

Fermat’s little theorem, p[22¢=! + 1 and ¢|2?P~! + 1. A small verification

shows that ¢ = 3,5,7 are not good choices, so let us try ¢ = 11. In this
case we find p = 43 and so it suffices to show that pq|22P9=1 4+ 1 for ¢ = 11
and p = 43. This is immediate, since the hard work has already been
completed: we have shown that it suffices to have p|¢??~1, ¢|2%?~! +1, and
-2 -2

—) = [ — ) =1 in order to have pg|2?P?~! + 1. But as one can easily

p
check, all these conditions are verified and the number 2 - 11 - 43 is a valid

answer.

Proposed problems

Problem 9.1.7. Let f,g: Z* — Z7 functions with the properties:

i) g is surjective;

ii) 2f2(n) = n? + ¢g*(n) for all positive integers n.

If, moreover, |f(n) — n| < 2004y/n for all n, prove that f has infinitely
many fixed points.

(2005 Moldavian IMO Team Selection Test)

Problem 9.1.8. Suppose that the positive integer a is not a perfect
a
square. Then | — | = —1 for infinitely many primes p.

p
Problem 9.1.9. Suppose that ay,as, ..., as4 are nonnegative integers
such that a} + a5 + - - + a5yg4 is a perfect square for all positive integers
n. What is the minimal number of such integers that must equal 07

(2004 Mathlinks Contest)
Problem 9.1.10. Find all positive integers n such that 2" — 13" — 1.
(American Mathematical Monthly)

Problem 9.1.11. Find the smallest prime factor of 1227 + 1.

9.2 Special numbers

9.2.1 Fermat’s numbers

Trying to find all primes of the form 2™ + 1, Fermat noticed that m must
be a power of 2. Indeed, if m equaled k - h with k£ an odd integer greater
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than 1, then
2 1= (2MF 41 = (2" + 1) (2D —9h(k=2) b ),

and so 2 + 1 would not be a prime.
The integers f, = 22" +1, n > 0, are called Fermat’s numbers. We have

fo=3, fi=5, fo=17, f3=0650573, f4=4,294, 967,297

After checking that these five numbers are primes, Fermat conjectured
that f,, is a prime for all n. But Euler proved that 641|fs. His argument
was the following:

f5=2%24+1=285"+2%) — (5-27)* + 1 =228 .641 — (640* — 1)

= 641(2% — 639(640% + 1)).

It is still an open problem if there are infinitely many Fermat primes.
The answer to this question is important because Gauss proved that a
regular polygon Q1Qs . ..Q, can be constructed by using only a ruler and
a compass if and only if n = 2"p;...pg, where & > 0 and py,...,p are
distinct Fermat primes. Gauss was the first to construct such a polygon for
n=17.

Problem 9.2.1. Prove that

(i) fn="Ffo- . fno1+2, n>1;

(u) gcd(fk, fh) =1 ka 75 h,’

(i) frn, ends in 7 for all n > 2.

Solution. (i) We have

fo=2 1= @ Y+ 1= (i -1+ 1= fly - 21 +2,
hence
fe—=2=fr1(fbm1—2), k>1 (1)
Multiplying relations (1) for k =1,...,n yields
fn=2=fo.. fn-1(fo—2)

and the conclusion follows.
For a different proof we can use directly the identity

resuinll Gl

k=0
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(ii) From (i) we have
ged(fn, fo) = ged(fn, f1) = - = ged(fn, fn-1) =1

for all n > 1, hence ged(fi, frn) =1 for all k # h.

(iii) Because f1 = 5 and fo... fn—1 is odd, using (i) it follows that f,
ends in 5+ 2 =7 for all n > 2.

Problem 9.2.2. Find all Fermat’s numbers that can be written as a sum
of two primes.

Solution. All Fermat’s numbers are odd. If f,, = p + ¢ for some primes
pand q, p < q, then p =2 and ¢ > 2. We obtain

2n71 2n71 2n71

¢g=2"—-1=(2¥" )2 -1=(2>"" —1)(2*" +1),
hence 22" — 1 must equal 1. That is n = 1 and f; = 2 + 3 is the unique
Fermat’s number with this property.

An alternative solution uses Problem 1 (iii): if n > 2, then f,, ends in
7, so ¢ must end in 5. Hence ¢ = 5 and 2 + 5 # f,, for n > 2. The only
Fermat’s number with the given property is fi.

Problem 9.2.3. Show that for any n > 2 the prime divisors p of f, are
of the form p=s-2"t2 4 1.

Solution. Because p|f,, it follows that 22” = —1 (mod p). Let i be the
least positive integer such that 2¢ = 1 (mod p). By squaring the congruence
22" = —1 (mod p) we get 22" =1 (mod p), hence i|2"!, that is i = 2*
for some nonnegative integer k. If k& < n, then 22" =1 (mod p), implying
22" = 1 (mod p), which contradicts the congruence 22" = —1 (mod p).
Therefore k = n + 1. From Fermat’s Little Theorem, 2°~1 = 1 (mod p),

hence 2"+1|p — 1, that is p = h - 2"+ 4 1 for some positive integer h. We

p2—

2
get p = 8t + 1 and (—) = (-1)"s * = 1, so 2 is a quadratic residue
p

mod p. Using Euler’s criterion, it follows that 2'7 =1 (mod p). Finally,

-1 -1
2"‘“1|pT7 hence pT =5-2"" thatisp=s-2""2 + 1.

Proposed problems

Problem 9.2.4. Find all positive integers n such that 2™ —1 is a multiple
of 3 and

is a divisor of 4m? + 1 for some integer m.

(1999 Korean Mathematical Olympiad)
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Problem 9.2.5. Prove that the greatest prime factor of f,, n > 2, is
greater than 2"72(n + 1).

(2005 Chinese IMO Team Selection Test)

9.2.2 Mersenne’s numbers

2’s numbers. It is

The integers M, = 2" — 1, n > 1, are called Mersenne
clear that if n is composite, then so is M,,. Moreover, if n = ab, where a and
b are integers greater than 1, then M, and M, both divide M,. But there
are primes n for which M,, is composite. For example 47|Mas, 167|Mss,
263| M3, and so on.

It is not known if there are infinitely many primes with this property.

The largest known prime is

232582657 -1

and it a Mersenne’s number. Presently, we know 42 Mersenne’s numbers
which are primes.

Theorem 9.2.1. Let p be an odd prime and let ¢ be a prime divisor of
M,,. Then q = 2kp+ 1 for some positive integer k.

Proof. From the congruence 2 = 1 (mod ¢) and from the fact that
p is a prime, it follows that p is the least positive integer satisfying this
property. By using Fermat’s Little Theorem, we have 297! = 1 (mod ¢),
hence p|g—1. But ¢—1 is an even integer, so ¢—1 = 2kp and the conclusion
follows.

Problem 9.2.6. Let p be a prime of the form 4k + 3. Then 2p+ 1 is a
prime if and only if 2p + 1 divides M,.

Solution. Suppose that ¢ = 2p + 1 is a prime. Then

9

(E) _ (_1)% — (_1)% = (—1)2RHDERE)
q
hence 2 is a quadratic residue mod gq.

Using Euler’s criterion it follows that 2% =1 (mod ¢), that is 2P = 1
(mod q) and the conclusion follows.

2Marin Mersenne (1588-1648), French monk who is best known for his role as a
clearing house for correspondence eminent philosophers and scientists and for his work

in number theory.
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If ¢ is composite, then it has a prime divisor g; such that ¢; < /7.
Using Fermat’s Little Theorem, we have 24~1 = 1 (mod ¢;). But 27 = 1
(mod ¢1) with p prime implies that p is the least positive integer with the
property. Hence plq; — 1, thus ¢; > p+1 > ,/p, contradicting the choice of

q1- Therefore ¢ must be a prime and the conclusion follows.

Proposed problems

Problem 9.2.7. Let P* denote all the odd primes less than 10000, and
suppose p € P*. For each subset S = {p1,pa2,...,px} of P*, with k > 2
and not including p, there exists a ¢ € P* \ S such that

(@+D(pr+1)(p2+1)...(px +1).
Find all such possible values of p.

(1999 Taiwanese Mathematical Olympiad)

9.2.3 Perfect numbers

An integer n > 2 is called perfect if the sum of its divisors is equal to 2n.
That is o(n) = 2n. For example, the numbers 6, 28, 496 are perfect. The
even perfect numbers are closely related to Mersenne’s numbers.

Theorem 9.2.2. (Euclid) If My is a prime, then n = 2F"1M;, is a
perfect number.

Proof. Because ged(2F=1,2F — 1) = 1, and the fact that o is a multi-

plicative function, it follows that
on)=c(2*He2*-1)=(2"-1) - 2" =2n. 0

There is also a partial converse, due to Euler.

Theorem 9.2.3. If the even positive integer n is perfect, then n =
k=1, for some positive integer k for which M, is a prime.

Proof. Let n = 2'u, where t > 1 and u is odd. Because n is perfect, we
have o(n) = 2n, hence o(2tu) = 2! 1y. Using again that o is multiplicative,
we get

o(2tu) = o(2)o(u) = (27 — 1)o(u).

This is equivalent to

(2 — 1o (u) = 2t .
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Because ged(21T! — 1,211) = 1, it follows that 2|0 (u), hence o(u) =
2t+1y for some positive integer v. We obtain u = (21 — 1)v.
The next step is to show that v = 1. If v > 1, then

ou) >14+v+2 — 1402 1) = (v +1)2 > v 28 = g (u),

a contradiction. We get v = 1, hence u = 2/*1 —1 = M;,; and o(u) = 2¢+1.
If M;y1 is not a prime, then o(u) > 27! which is impossible. Finally,
n =21 My, where k =t + 1. [l

Remark. Recall that M is a prime only if k is a prime. This fact reflects
also in Theorem 9.2.2 and Theorem 9.2.3.

Problem 9.2.8. Show that any even perfect number is triangular.

Solution. Using Theorem 9.2.3, we have

2k m(m+ 1)

n =210, = 7(2’€ )= —"

where m = 2 — 1 and we are done.

Proposed problems

Problem 9.2.9. Prove that if n is an even perfect number, then 8n + 1
is a perfect square.

Problem 9.2.10. Show that if k is an odd positive integer, then 2= A1,
can be written as the sum of the cubes of the first 2 odd positive integers.
In particular, any perfect number has this property.

9.3 Sequences of integers

9.3.1 Fibonacci and Lucas sequences

Leonardo Fibonacci® introduced in 1228 the sequence F; = F» = 1 and
Foi1=F,+ F,—1,n > 2. It is not difficult to prove by induction that the

closed form for Fj, is given by the Binet’s formula

)

3 Leonardo Pisano Fibonacci (1170-1250) played an important role in reviving ancient

1
Fp=—
VB

mathematics and made significant contributions of his ”Liber abaci” introduced the

Hindu-Arabic place-valued decimal system and the use of Arabic numerals into Europe.
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for all n > 1. As a consequence of the recursive definition or of formula
above, it is a convention to define Fy = 0.

In what follows we give some arithmetical properties of the Fibonacci
numbers.

1) If m|n, then F,,,|F,. If n > 5 and F,, is a prime, then so is n.

2) For any m,n > 1, ged(Fr, Fr) = Fyea(m,n)-

3) If ged(m,n) = 1, then F,, Fy | Fpp,.

In order to prove 1) suppose that n = mk for some integer k¥ > 1 and

1 ) 1—-+5
denote o = +2\/_, B = 2\/_. Using (1), we have
Fn _ a” _ﬂn _ (am)k B (ﬂm)k _ . m(k—1) m(k—2) gm m(k—1)
Fpn am—pm_  am—pgm o s '

Because a + = 1 and a3 = —1 it follows by induction that o’ + ° is
an integer for all integers ¢ > 1 and the conclusion follows.

It is now clear that if n = kh, k > 3, then F}, divides F,, hence F}, is not
a prime.

For 2) let d = ged(m,n) and suppose that n > m. Applying Euclid’s
Algorithm, we get

n=mq +m
m =Tr1q2 + 12

rL ="T2q3+ 713

Ti—1 = Tiqi+1

and so d = r;. We have
gcd(Fr,, Fy) = ged(Fon, Frgy4r1) = 9¢d(Frm, Frngi -1 Fry + Frngy Fri41)
= gcd(Fp, Frngy—1Fr,) = ged(Fy,, Fry)
because it is not difficult to check that for any positive integers m, n,
Foin=Fn-1F, + FFpi (2)

property 1), and the fact that ged(Fnk—1,Fn) = 1.
By applying repeatedly this procedure, we arrive at

ng(FmaFn) = ng(FWVF’rl) = ng(FTnFTz)
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=...=gcd(F,,_1,F,,) =F,, = Fy.
Property 3) follows from 2) by observing that
ged(Fo, Fr) = Fyeqimm) = F1 =1

and then by using 1).

Lucas’ sequence is defined by Lo =2, L1 = 1, and Ly,+1 = Ly, + Ly—1,
n > 1. The Lucas numbers are the companions to the Fibonacci numbers
because they satisfy the same recurrence.

The analog of Binet’s Fibonacci number formula for Lucas numbers is

Ln:<1+2\/5> +<1_2\/5> , n>0. (3)

Problem 9.3.1. Show that there is a positive number in the Fibonacci

sequence which is divisible by 1000.
(1999 Irish Mathematical Olympiad)

Solution. In fact, for any natural number n, there exist infinitely many
positive Fibonacci numbers divisible by n.

Consider ordered pairs of consecutive Fibonacci numbers (Fp, F1),
(Fy, Fy),... taken modulo n. Because the Fibonacci sequence is infinite
and there are only n? possible ordered pairs of integers modulo n, two
such pairs (F}, Fj4+1) must be congruent: F; = Fiip, and Fi11 = Fippmqa
(mod n) for some i and m.

Ifi > 1then F;_1 = Fi4q1 — F; = Fiyimt1 — Fivm = Figm—1 (mod n).
Likewise, Fiyo = Fiy1 + F; = Fipmy1 + Firm = Fitoym (mod n). Con-
tinuing similarly, we have F; = F,, (mod n) for all j > 0. In particular,
0=Fy = F, = Fy,, = (mod n), so the numbers F,,, F5,,... are all
positive Fibonacci numbers divisible by n. Applying this to n = 1000, we
are done.

Problem 9.3.2. Prove that

(i) The statement "F, .y — F, is divisible by 10 for all positive integers
n” is true if k = 60 and false for any positive integer k < 60;

(ii) The statement "F, 4+, — F, is divisible by 100 for all positive integers
n” is true if t = 300 and false for any positive integer t < 300.

(1996 Irish Mathematical Olympiad)
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Solution. A direct computation shows that the Fibonacci sequence has
period 3 modulo 2 and 20 modulo 5 (compute terms until the initial terms
0, 1 repeat, at which time the entire sequence repeats), yielding (a). As for
(b), one computes that the period mod 4 is 6. The period mod 25 turns out
to be 100, which is awfully many terms to compute by hand, but knowing
that the period must be a multiple of 20 helps, and verifying the recurrence
Fois =tF,14 + F,, where t is an integer congruent to 2 modulo 5, shows
that the period divides 100; finally, an explicit computation shows that the
period is not 20.

Problem 9.3.3. Let (ap)n>0 be the sequence defined by ap =0, a1 =1
and

Ap41 — 362ln +ap—1 — ()"

for all integers n > 0. Prove that a,, is a perfect square for all n > 0.

Solution. Note that as = 1, a3 = 4, a4 = 9, a5 = 25, so ag = FOQ,
a1 = F?, ax = F}, a3 = F}, ay = FZ, a5 = F2, where (F),)n>0 is the
Fibonacci sequence.

We induct on n to prove that a,, = F2 for alln > 0. Assume that aj, = F7
for all £ < n. Hence

2 2 2
an = Fn7 an—1 = Fn—17 an—2 = Fn—2' (1)

From the given relation we obtain
Apt1 — 3ap + ap—1 =2(=1)"

and
Ay — 3Gp—1+ Qp_o = 2(—1)”_1, n > 2.

Summing up these equalities yields
Opt1 — 20n — 2651+ Gp—o =0, n>2. (2)
Using the relations (1) and (2) we obtain

i1 =2F2 +2F2 | —F? s =(Fo+Fy 1)+ (F,—F, 1) —F?_, =

n
— 2 2 2 _ 2
_Fn+1+Fn—2_Fn—2_Fn+17

as desired.
Problem 9.3.4. Define the sequence (an)n>0 by ap =0, a1 =1, ag = 2,

as =6 and

(pta = 20n43 + Api2 — 2Gp11 — Ap, 12> 0.
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Prove that n divides a,, for all n > 0.

Solution. From the hypothesis it follows that ay = 12, a5 = 25, ag = 48.

Wehave 2L 22 1 83 9 M _3 B _5 9 _ g% _ g forall
n

n=1,2,3,4,5,6, where (F,),>1 is the Fibonacci’s sequence.
We prove by induction that a,, = nF, for all n. Indeed assuming that
ar = kFy, for kK <n + 3, we have

an+a =2(n+3)Foys + (n+2)Foye — 2(n+ 1) Fyp — nky, =
=2(n+3)Fpqs+ (n+2)Fuie = 2(n+ 1)Foy1 — n(Foye — Faq) =
=2n+3)F413+2F, 10— (n+2)F11 =
=2(n+3)Fnts + 2Fni2 — (0 + 2)(Frys — Foy2) =

= (n+4)(Fnis + Fui2) = (0 4+ 4) Foya,

as desired.

Proposed problems

Problem 9.3.5. Determine the maximum value of m? + n?, where m

and n are integers satisfying 1 < m,n < 1981 and (n? — mn —m?)? = 1.
(2274 IMO)

Problem 9.3.6. Prove that for any integer n > 4, F,, + 1 is not a prime.
Problem 9.3.7. Let k be an integer greater than 1, ag =4, a1 = as =
(k? —2)? and

Gpt1 = pan—1 — 2(an + apn—1) — an_o + 8 for n > 2.

Prove that 2 + ,/a,, is a perfect square for all n.

9.3.2 Problems involving linear recursive relations

A sequence xg, r1, X2, ... of complex numbers is defined recursively by a

linear recurrence of order k if
Tp = Q1Tp_1 + Q2Tp_2 4+ F apTp_p, N>k (1)

where aq, as, . .., ax are given complex numbers and g = ag, 1 = aq, ...,

Tk—1 = p—1 are also given.
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The main problem is to find a general formula for z, in terms of
a1,as,...,05, 0g,01,...,ak_1 and n. In order to solve this problem we
attach to (1) the algebraic equation

tF—atFt —aotF 2 — .. — =0, (2)

which is called the characteristic equation of (1).
Theorem 9.3.1. If the characteristic equation (2) has distinct roots
ti,to, ..., 1k, then

Ty = c1t] + coty + - + cpty (3)
where the constants c1,ca, ..., cr are determined by the initial conditions
To=Qp; 1 = Q1y..., Th—1 = Qf—1.

Proof. Consider the sequence yo, y1,y2,... given by

Yn = C1t7 + oty + -+ -+ cptl,.

It is not difficult to prove that the sequence (yn)n>0 satisfies the linear
recurrence (1), since t1, ta, . . ., t;, are the roots of the characteristic equation

(2). Consider the following system of linear equations:

c1+c+--+cp =
city +coto + -+ - + gl =

k—1 k—1 k—1
city Tt ety T+ ekt = g

whose determinant is the so-called Vandermonde determinant

Vit ta,. . t) = [ 45 —t)
1<i<j<k

This determinant is nonzero, because t1,to, ..., t; are distinct.

Hence c¢1,ca,. .., ¢, are uniquely determined as solution to system (4).
Moreover, yg = ag = Tg, Y1 = Q1 = L1y, Yp—1 = Qk—1 = Tk—1. Using
strong induction, from (1) it follows that y,, = x,, for all n. O

The case when the roots of the characteristic equation (2) are not distinct
is addressed in the following theorem.

Theorem 9.3.2. Suppose that the equation (2) has the distinct roots
t1,...,th, with multiplicities s1,...,sn, respectively. Then x, is a linear

combination of
nonth, .. STy

RontR, ... nShT
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The proof of this result uses the so-called Hermite’s interpolation poly-
nomial or formal series.

The most frequent situation is when & = 2. Then the linear recurrence
becomes

Tp = A1Tp_1 + A2Tp_2, N =>2

where a1, as are given complex numbers and zg = ag, T1 = 3.
If the characteristic equation t> — a1t — as = 0 has distinct roots ¢1, ta,
then
Ty = 1t} +coty, n >0,

where c¢1, o are solutions to the system of linear equations
€1+ c2 =, ity +cate = ag,

that is
a1 — Qgta apt] —
a=-—/——7]7/" €CE=-—"F]T"F
t1 —t2 t1 —to

If the characteristic equation has the nonzero double root ¢1, then
Ty = 1lT + cant} = (c1 + can)ty,

where c1, ¢ are determined from the system of equations xg = «ag, 1 = a1,

that is
a1 — aotq

131
Example. Let us find the general term of the sequence

€1 = Qp, C2=

Phb=0, PA=1,....P,=2P, 1+ P,_2, n>2.

The characteristic equation is t2 — 2t —1 = 0, whose roots are t; = 1++/2
and o = 1 — /2. We have P, = c1t] + caty, n > 0, where ¢; + c2 =0 and
c1(1 4+ v/2) + co(1 —+/2) = 1, hence

1 n n
Pnzm[(ur\@) ~(1-v2)"], n>0.

This sequence is called the Pell’s sequence and it plays an important part
in Diophantine equations.

In some situations we encounter nonhomogeneous recurrences of order k
of the form

Tp = 01%Tp—1 + Q2Tp_2 + -+ QT +b, n >k,
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where aq1,as,...,a;,b are given complex numbers and 1 = a1, T3 =
Qg,..., Tx—1 = «ag—1. The method of attack consists of performing
a translation x, = vy, + 0§, where (§ is the solution to the equation
(I1—a; —ag—--+—ag)B =bwhen a1 +as + -+ + ar # 1. The sequence

(yn)n>0 satisfies the linear recurrence (1).
Example. Let us find z, if g = o, x, = ax,_1+b,n > 1.
If @ = 1, we have an arithmetical sequence whose first term is o and

whose common difference is b. In this case x,, = o + nb.

b

—a
this case (yn)n>0 satisfies the recurrence yo = a — 8, yn, = ayn—1, n > 1,

. In

If a # 1, we perform the translation x,, = y,, + 3, where § = 1

which is a geometric sequence whose first term is @ — 3 and whose ratio is
a. We obtain y,, = (o — 8)a™, hence

= - b ™4 b >0
T, = | « T a T n > 0.

Problem 9.3.8. Let a and b be positive integers and let the sequence

(Tn)n>0 be defined by xo9 = 1 and zpy1 = axy, + b for all nonnegative
integers n. Prove that for any choice of a and b, the sequence (zn)n>0

contains infinitely many composite numbers.
(1995 German Mathematical Olympiad)

Solution. Assume on the contrary that x, is composite for only finitely
many n. Take N large than all such n, so that x,, is prime for all n > N.
Choose such a prime z,, = p not dividing a — 1 (this excludes only finitely
many candidates). Let ¢ be such that (1 —a) = b (mod p); then

Tpy1 —t=azy, +b—b=a(z, —t) (mod p).
In particular,
Tmap1 =t + @map1—t) =t +a? (xym —t) =0 (mod p).

However, 2py4p—1 is a prime greater than p, yielding a contradiction.
Hence infinitely many of the x,, are composite.

Problem 9.3.9. Find a,, if ag = 1 and an+1 = 2a, ++/3a2 —2, n > 0.

Solution. We have (a,+1 — 2a,)? = 3a2 — 2, so

a,, —4dapiia, +a2+2=0, n>0.

Then
a? —4ana, 1 +a>_ | +2=0 n>1,
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hence, by subtraction,

2 2
Upy1 = Opy — Aan(any1 — an—1) =0

for all n > 1. Because it is clear that (ay)n>0 is increasing we have a,+1 —
an—1 # 0, for alln > 1, so
An+41 + an_1 — 4an = Oa n > 1a

that is ap4+1 = 4a, — ap—1, n > 1. Moreover, ap = 1 and a; = 3. The
characteristic equation is t? — 4t +1 = 0, whose roots are t; = 2+ V3 and
ts = 2 — v/3. We obtain
1
<m:§7§u+¢$@+v®”—u—¢$@—¢$% n>0.

We can also write a,, as follows:

2n+1 2n+1
1 14+3 1-3
ap = — _— — , n>0.

V3 2 2

Note that from ag = 1, a1 = 3, and an4+1 = 4a, — a,—1 it follows by
strong induction that a,, is a positive integer for all n.

Problem 9.3.10. Consider the sequence {a,} such that ag =4, a1 = 22
and ap —6an_1+an—2 =0 for n > 2. Prove that there exist sequences {x,}
and {yn} of positive integers such that
yp +7

Tn — Yn

for any n > 0.
(2001 Bulgarian Mathematical Olympiad)

Solution. Consider the sequence {c,} of positive integers such that ¢y =
2, ¢y =1and ¢, =2¢,_1 +cp_o for n > 2.

We prove by induction that a,, = copt2 for n > 0. We check the base
cases of ag =4 = ¢y and a1 = 9 = ¢4. Then, for any k > 2, assuming the
claim holds forn =k —2 and n =k — 1,

Cokt2 = 2C2k+1 + Cok
= 2(2cox + cor—1) + ax—1
= 4degp + (cor — Cop—2) +ag—1
= 06ag—1 —ag—2

= af,
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so the claim holds for n = k as well, and the induction is complete.
Forn > 1,

Ap41 (o35 . 0 1 Qn Ap—1
An42 OGnp41 1 2 An+41 an ’

Ap+1 anp,

and

An+2 An+1

Thus, for n > 0,
i1 — CnCnya = (=1)"(c] — coca) = (=1)"(1* = 2-4) = (=1)"(=7).

In particular, for all n > 0,

2 2 2n
Cony1 — C2nln = Cypiy — ConCont2 = (—1)7"(=7) = =T,
and )
gy + T
a, = —/———.
Con

We may therefore take y, = can+1 and z, = cap + yn.
Problem 9.3.11. The sequence a1, as, ... is defined by the initial con-
ditions a1 = 20, ag = 30 and the recursion anys = 3ap41 — an for n > 1.

Find all positive integers n for which 1+ Sanani1 is a perfect square.
(2002 Balkan Mathematical Olympiad)

Solution. The only solution is n = 3. We can check that 20-30-5+ 1=
3001 and 30-70-5+4+1 = 10501 are not perfect squares, while 70-180-5+1 =
63001 = 2512 is a perfect square. Then we must only prove that 1+5a,,a,1
is not a perfect square for n > 4. First, we will prove a lemma.

Lemma. For any integer n > 2,
afL + 500 = ap—1an+1-
Proof. We will prove this by induction on n. In the base case, 302+500 =
1400 = 20 - 70. Now assume that afL 4500 = ap—1an+1. Then

Antntz = (3an41 — an)(an) = 3ant1an — ar

= 3ap41an — (An-1an4+1 — 500) = 500 + ay41(3a, — an—1) = 500 + a2, ,,
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proving the inductive step. Therefore the desired statement is true from
induction. |

2

Now, for n >4, (ap + ani1)? = a2 + aflﬂ + 2anan41. But

anyy = 9a +ah_; — 6an_1an,
S0
(an + anﬂ)2 = 2apan+1 + 30,30y, — an_1) + aka + a,zl — 3apan_1
= dann+t1 + afkl — QpQp — 2
= 5anani1 +a>_, — (a2_, +500) = 5a,a,41 — 500,

by the lemma and the definition of a.
Therefore (a, + ani1)? = 5anani1 — 500 < Sanani1 + 1. Since a,, is
increasing and n > 4,

Gn + Gnt+1 > 180 + 470 = 650,
SO
(a'n + An+41 + 1)2 = (an + a'n+1)2 + Z(G,n + an+1) + 1
> (an + ani1)? 4 501 = Sapany1 + 1.

Because two adjacent integers have squares above and below 5a,a,41+1,
that value is not a perfect square for n > 4.

Proposed problems

Problem 9.3.12. Let a,b be integers greater than 1. The sequence x1,

Zo,... is defined by the initial conditions xy = 0, 1 = 1 and the recursion
T2n = AT2n—1 — T2n—2, T2n+4+1 = bxa, — Ton—1

for n > 1. Prove that for any natural numbers m and n, the product
TptmTntm—1 - - - Tnt1 is divisible by z, 2 —1.

(2001 St. Petersburg City Mathematical Olympiad)

Problem 9.3.13. Let m be a positive integer. Define the sequence

20y — Gp—1 for n > 1. Prove that

{an}n>0 by ap =0, a1 = m and ap41 =m
an ordered pair (a,b) of nonnegative integers, with a < b, is a solution of
the equation

a?+b*

ab+1
if and only if (a,b) = (an, an+1) for some n > 0.
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(1998 Canadian Mathematical Olympiad)

Problem 9.3.14. Let b, ¢ be positive integers, and define the sequence

ai,asz,... by a; =b, ag = ¢, and
An42 = |3an+1 - 2an|

for n > 1. Find all such (b, ¢) for which the sequence a1, a9, ... has only a
finite number of composite terms.

(2002 Bulgarian Mathematical Olympiad)

9.3.3 Nonstandard sequences of integers

Problem 9.3.15. Let k be a positive integer. The sequence a,, is defined
by a1 = 1, and a, is the n-th positive integer greater than a,_1 which is

congruent to n modulo k. Find a, is closed form.

(1997 Austrian Mathematical Olympiad)

2 —1
Solution. We have a,, = w If k = 2, then a,, = n?. First,

observe that a; =1 (mod k). Thus, for all n, a,, = n (mod k), and the first
positive integer greater than a,_1 which is congruent to n modulo £ must
be a,—1 + 1. The n-th positive integer greater than a,,_; that is congruent
to n modulo k is simply (n— 1)k more than the first positive integer greater
than a,_1 which satisfies that condition. Therefore, a,, = a,_1+1+(n—1)k.

Solving this recursion gives

—1
anp =n-+ uk
2
Problem 9.3.16. Let a; = 19, ax = 98. Forn > 1, define an42 to be the
remainder of a, + an4+1 when it is divided by 100. What is the remainder
when
a?+a%+"'+a§998
is divided by 87
(1998 United Kingdom Mathematical Olympiad)

Solution. The answer is 0. Consider a,, (mod 4) which is not changed
by taking the remainder divided by 100, there’s the cycle 3, 2, 1, 3, 0, 3
which repeats 333 times. Then

al+a3+ - +alggs =333(1+4+1+1+0+1)=0 (mod 8),
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as claimed.
Problem 9.3.17. A sequence of integers {a,}n>1 satisfies the following
recursive relation

Any1 = a> +1999 forn =1,2,. ..
Prove that there exists at most one n for which a, is a perfect square.
(1999 Austrian-Polish Mathematics Competition)
Solution. Consider the possible values of (ay, an4+1) modulo 4:

a, |0]1]2]3
ans1 |3]0]3]2

No matter what a; is, the terms as, a4, ... are all 2 or 3 (mod 4). How-
ever, all perfect squares are 0 or 1 (mod 4), so at most two terms (a; and
as) can be perfect squares. If a; and ag are both perfect squares, then
writing a; = a?, az = b*> we have a® + 1999 = b? or 1999 = b? — (a®)? =
(b+a®)(b—a®). Because 1999 is prime, b —a® = 1 and b+ a® = 1999. Thus
ad = 199 -1 = 999, which is impossible. Hence at most one term of the
sequence is a perfect square.

Problem 9.3.18. Determine if there exists an infinite sequence of posi-
tive integers such that

(i) no term divides any other term;

(i) every pair of terms has a common divisor greater than 1, but no
integer greater than 1 divides all the terms.

(1999 Hungarian Mathematical Olympiad)

Solution. The desired sequence exists. Let pg,pi1,... be the primes
greater than 5 in order, and let g3; = 6, g3;41 = 10, ¢3;42 = 15 for
each nonnegative integer 7. Then let s; = p;q; for all ¢ > 0. The sequence
50,51, 82, ... clearly satisfies (i) because s; is not even divisible by p; for
i # j. For the first part of (ii), any two terms have their indices both in
{0,1}, both in {0,2}, or both in {1,2} (mod 3), so they have a common
divisor of 2, 3, or 5, respectively. For the second part, we just need to check
that no prime divides all the s;. Indeed, 21 s2, 31 51, 51 so, and no prime
greater than 5 divides more than one s;.

Problem 9.3.19. Let a1, a9, ... be a sequence satisfying a1 =2, az =5
and

apy2 = (2 — n2)an+1 + 2+ nz)an
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for all n > 1. Do there exist indices p,q and r such that apaqy = a,?
(1995 Czech-Slovak Match)

Solution. No such p, g, r exist. We show that for all n, a,, =2 (mod 3).
This holds for n = 1 and n = 2 by assumption and follows for all n by
induction:

g2 = (2 =12 ans1 + (2 +nHan

=2(2-n?)+22+n*)=8=2 (mod 3).

Hence for any p, ¢,7, apag =1 (mod 3) while a, =2 (mod 3), so apaq #
.

Problem 9.3.20. Is there a sequence of natural numbers in which every
natural number occurs just once and moreover, for any k =1,2,3,... the
sum of the first k terms is divisible by k¢

(1995 Russian Mathematical Olympiad)

Solution. We recursively construct such a sequence. Suppose aq, . . ., Gm,
have been chosen, with s = a; + - - -+ a,, and let n be the smallest number
not yet appearing. By the Chinese Remainder Theorem, there exists ¢ such
that t = —s (mod m+ 1) and t = —s —n (mod m + 2). We can increase ¢
by a suitably large multiple of (m + 1)(m + 2) to ensure it does not equal
any of ai,...,an,. Then ai,...,anm,t,n also has the desired property, and

the construction assures that 1,...,m all occur among the first 2m terms.

Proposed problems

Problem 9.3.21. Let {a,} be a sequence of integers such that for n > 1
(n—1Dapt1 = (n+ a, —2(n —1).

If 2000 divides a1999, find the smallest n > 2 such that 2000 divides a,.

(1999 Bulgarian Mathematical Olympiad)

Problem 9.3.22. The sequence (a,)n>0 is defined by ap =1, a1 = 3
and

a Gnt+1+9a, if n  iseven,
n+2 = . .
9apn+41 + day, if n isodd.

Prove that
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2000
(a) Y aj is divisible by 20,
k=1995
(b) agn+1 is not a perfect square for every n =0,1,2, ...
(1995 Vietnamese Mathematical Olympiad)

Problem 9.3.23. Prove that for any natural number a; > 1, there exists
an increasing sequence of natural numbers as, ag, ... such that a? + a2 +
-~-—|—a% is divisible by a3 + as + - - - + ay, for all £ > 1.

(1995 Russian Mathematical Olympiad)

Problem 9.3.24. The sequence ag, a1, as, ... satisfies

1
Am+n + am_n = §<a2m + a2n)
for all nonnegative integers m and n with m > n. If a; = 1, determine a,,.
(1995 Russian Mathematical Olympiad)

Problem 9.3.25. The sequence of real numbers a1, as, as, ... satisfies

the initial conditions a1 = 2, as = 500, ag = 2000 as well as the relation

Ap+2 + Ap+1 _ Ap+1

Gp+1+ 0p—1  Ap-—1

for n = 2,3,4,... Prove that all the terms of this sequence are positive

integers and that 22990 divides the number asogo.
(1999 Slovenian Mathematical Olympiad)

Problem 9.3.26. Let k be a fixed positive integer. We define the se-
quence aj,az,... by a; = k+ 1 and the recursion a,; = a2 — ka, + k
for n > 1. Prove that a,, and a,, are relatively prime for distinct positive
integers m and n.

Problem 9.3.27. Suppose the sequence of nonnegative integers aq,

as, ..., a1gg7 satisfies
a; + a; Sai+j Sai+aj+1

for all 4,5 > 1 with ¢ + 7 < 1997. Show that there exists a real number x
such that a, = [nz| for all 1 <n < 1997.

(1997 USA Mathematical Olympiad)
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Problem 9.3.28. The sequence {a,} is given by the following relation:
an — 1
2 )
2ay,

if a, >1,
An4+1 =

, if a, < 1.
1—a, I a

Given that ag is a positive integer, a,, # 2 for each n = 1,2,...,2001,
and a2002 = 2. Find ag.

(2002 St. Petersburg City Mathematical Olympiad)

Problem 9.3.29. Let 1 = 22 = 23 = 1 and 243 = Tpn + Tnt1Tni2
for all positive integers n. Prove that for any positive integer m there is an
integer k > 0 such that m divides x.

Problem 9.3.30. Find all infinite bounded sequences a1, as, ... of pos-
itive integers such that for all n > 2,

_ Gp—1 + ap—2
" ged(an_1,an_2)

(1999 Russian Mathematical Olympiad)

a

Problem 9.3.31. Let aj,as, ... be a sequence of positive integers satis-
fying the condition 0 < a,+1 — a, < 2001 for all integers n > 1. Prove that
there exist an infinite number of ordered pairs (p,q) of distinct positive

integers such that a, is a divisor of a,.
(2001 Vietnamese Mathematical Olympiad)

Problem 9.3.32. Define the sequence {x,,},>0 by 2o =0 and

3r+1 _
Tp—1 + — it n=3"(3k+1),
Ty, =
r+1 1
g — o t1 i =33k +2)

where k and r are nonnegative integers. Prove that every integer appears

exactly once in this sequence.
(1999 Iranian Mathematical Olympiad)

Problem 9.3.33. Suppose that a1, as, ... is a sequence of natural num-
bers such that for all natural numbers m and n, ged(am, an) = ageam,n)-
Prove that there exists a sequence b1, ba, ... of natural numbers such that

an = H bg for all integers n > 1.
d|n
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(2001 Iranian Mathematical Olympiad)
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10

Problems Involving Binomial
Coeflicients

10.1 Binomial coefficients

One of the main problems leading to considering binomial coefficients

n

is the expansion of (a + b)"™, where a,b are complex numbers and n is a

positive integer. It is well-known that

n __ n n n n—1 n n—1 n n
(a+b) —<O)a +(1>a b+ +<n_1>ab +(n>b,

n\ _ n!
k _k;!(n—k)!7

integers (:)L)’ (n) R (n) are called binomial coefficients. They can be
n

where k=0,1,...,n with the convention 0! = 1. The

1
obtained recursively by using Pascal' ’s triangle:

1 Blaise Pascal (1623-1662) was a very influencial French mathematician and philoso-

phers who contributed to many areas of mathematics.
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1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1

in which every entry different from 1 is the sum of the two entries above

adjacent to it.
The fundamental properties of the binomial coefficients are the following:

1) (symmetry) (Z) = (n i k);

2) (Pascal’s triangle property) (k j_ )= (ZI_ i) + (n ; 1);
n n n n

3)(m0n0t0nicity)<><<)<~-~<(n ):(n);
0 1 (2] +1 5]

4) (sum of binomial coefficients) 0) + <1) +

5) (alternating sum) (g) - (1

k
6) (Vandermonde property) Z (T) (k 71 z) = (m Z_ n);

=0

7) If p is a prime, thenp(Z)7 k=1,...,p—1.
Problem 10.1.1. Let n be an odd positive integer. Prove that the set

()G ()

contains an odd number of odd numbers.
Solution. For n = 1 the claim is clear, so let n > 3.

Define S,, = (n) + (n) + -4 (nazl) Then
1 2 T

() () ()=

or S, =2""1 — 1. Because S, is odd it follows that the sum S,, contains

an odd number of odd terms, as desired.
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Problem 10.1.2. Determine all the positive integers n > 3, such that
92000
14 n . n n n
1 2 3/

(1998 Chinese Mathematical Olympiad)

is divisible by

Solution. The solutions are n = 3,7,23. Since 2 is a prime,

() () )

for some positive integer k£ < 2000. We have

1+ (T) + (Z) + (Z) = (n+1)(n* —n+6)/6,

ie, (n+1)(n?> —n+6) = 3 x 2" Let m = n + 1, then m > 4 and
m(m? — 3m + 8) = 3 x 251, We consider the following two cases.
(a) m = 2°. Since m > 4, s > 2. We have

2% —3x2°4+8=m*>—-3m+8=3x2
for some positive integer ¢. If s > 4, then
8§=3x2" (mod 16) = 2'=8 = m?—3m+8=24 = m(m—3) = 16,

which is impossible. Thus either s =3, m =8, t =4, n =7, or s = 2,
m=4,t=2,n=3.
(b) m = 3 x 2%. Since m > 4, m > 4 and u > 1. We have

90x22 —9x2“+8=m?—-3m+8=2"

for some positive integer v. It is easy to check that there is no solution
for v when w = 1,2. If w > 4, we have 8 = 2¥ (mod 16) = v = 3 and
m(m — 3) = 0, which is impossible. So u = 3, m = 3 x 23 = 24, v = 9,
n = 23.

Problem 10.1.3. Let m and n be integers such that 1 < m < n. Prove
that m is a divisor of

m—1 (n
ny (-1) (k>

k=0
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(2001 Hungarian Mathematical Olympiad)

Solution. We can write the given expression as follows:

nEer () S () (20)

Il Il
3 3
3
M1 I
| |
[ —
= =
RS
3
>
—
N———
+
3
gk
L
I
—_
=
N
> 3
[
— =
N———

Il
3
= 3
Il |

=)
T
—
S—
S
7N
3
Eol
—_
~~_
|
3
S 3
(=) [loH
T
—
S—
S
Y
3
>
—_
N~

I
3
=

3
N
N
3 3
\'_/

The final expression is clearly divisible by m.

Problem 10.1.4. Show that for any positive integer n, the number

2 1 2 1 2 1
S, = n+ .92 n+ .92 g 4 4 nt .3n
0 2 2n

is the sum of two consecutive perfect squares.
(1999 Romanian IMO Team Selection Test)

Solution. It is easy to see that:

Sn _ [(2 + \/§)2n+1 + (2 _ \/§)2n+1}.

|

The required property says: there exists k > 0 such that S,, = (k—1)2+
k2, or, equivalently,
2k* —2k+1- 5, =0.

The discriminant of this equation is A = 4(25,, — 1), and, after usual

computations, we obtain

Al <(1 + \/§)2n+1 +(1- \/§)Qn+l>2

277,
After solving the equation, we find that

o 2n+1 + (]_ + \/§)2n+1 + (]_ _ \/§)2n+1
- 2n+2 :
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Therefore, it is sufficient to prove that k£ is an integer number. Let us
denote E,, = (1++/3)" +(1—+/3)™, where m is a positive integer. Clearly,
FE,, is an integer. We shall prove that 2l%] divides E,,, For Ey =2, Fy =
2, E5 = 8, the assertion is true. Moreover, the numbers E,, satisfy the
relation:

Em = QEm_l + 2E/‘m—2-

The property now follows by induction.
Problem 10.1.5. Prove that for every pair m,k of natural numbers, m

has a unique representation in the form
_ ag Af—1 o a
me (1) () e (7)

ap > ap—1>--->a >t >1.

where

(1996 Iranian Mathematical Olympiad)

Solution. We first show uniqueness. Suppose m is represented by two
sequences ag,...,a; and bg,...,b;. Find the first position in which they

differ; without loss of generality, assume this position is k and that aj, > by.

Then
b b — 1 b, —k+1 b +1
< <
me ()= () oo (M) < () =
a contradiction.

To show existence, apply the greedy algorithm: find the largest ax such

that (i:) < m, and apply the same algorithm with m and k replaced by

m— (i:) and k—1. We need only make sure that the sequence obtained is

a 1
indeed decreasing, but this follows because by assumption, m < ( kot ),

m
ag Q.
d — < .
and so m k k— 1)

Problem 10.1.6. Show that for any positive integer n > 3, the least

common multiple of the numbers 1,2,...,n is greater than 2" 1.

(1999 Czech-Slovak Match)
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Solution. For any n > 3 we have

=3 () <2 (1) =)
n—1

5]

an argument involving prime factorizations, we will prove the more gen-

Hence it suffices to show that n< ) divides lem(1,2,...,n). Using

eral assertion that for each k < n, lem(n,n —1,...,n — k) is divisible by
n—1
Let & and n be fixed natural numbers with & < n, and let p < n be an
arbitrary prime. Let p* be the highest power of p which divides lem(n,n —
1,...,n — k), where p®*|n — [ for some [. Then for each i < «, we know
, l
that p*|n — . Thus exactly L?J of {n—14+1,n—142,...,n} and exactly

k—1 ) .
—— | of{n—=1—-1,n—1-2,...,n—k} are multiples of p’, so p" divides

l k— k
{—iJ + { - J < {—ZJ of the remaining k& numbers, that is, at most the
p p p

number of multiples of p* between 1 and k. It follows that p divides

n—1 nn—1)...(n—=14+1)n—-101-1)...(n—k)
”( k ): ! (n=1)

-1
at most « times, so that indeed n(n i >|lcm(n7n —1,...,n—k).

Proposed problems
Problem 10.1.7. Show that the sequence
(2002) (2003) (2004)
2002/’ \2002)"\2002/) """
considered modulo 2002, is periodic.

(2002 Baltic Mathematical Competition)

Problem 10.1.8. Prove that

for any prime number p.
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Problem 10.1.9. Let k,m,n be positive integers such that m + k + 1
is a prime number greater than n + 1. Let us denote Cx = s(s + 1). Show
that the product

(Cm+1 - Ok)(0m+2 - Ok) cee (Cm+n - Ck)
is divisible by C1C5...C,.
(18th IMO)

Problem 10.1.10. Let n,k be arbitrary positive integers. Show that

there exists positive integers a; > as > ag > a4 > a5 > k such that

ai ao as a4 as
== + + + + .
(2000 Romanian IMO Team Selection Test)

Problem 10.1.11. Prove that if n and m are integers, and m is odd,
then

S (o

k=0

is an integer.
(2004 Romanian IMO Team Selection Test)
Problem 10.1.12. Show that for any positive integer n the number
> (5
k=0
is not divisible by 5.
(16" IMO)

Problem 10.1.13. Prove that for a positive integer k there is an integer
n > 2 such that G) - ( " 1) are all divisible by & if and only if k is
n—

a prime.
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10.2 Lucas’ and Kummer’s Theorems

The following theorems by E. Lucas? (1878) and E. Kummer® (1852) are
very useful in number theory. Let n be a positive integer, and let p be a
prime. Let M mm—1 - - - o, denote the base p representation of n; that is,

. m
N =NmNm—1...Mo, =No +11P+ -+ Nmp,

where 0 < ng,n1,...,Nm < p— 1 and n,, # 0.
Theorem 10.2.1. (Lucas) Let p be a prime, and let n be a positive
integer with n = MmNm—1 ... No,. Let i be a positive integer less than n. If

=149+ 11p+ -+ imp™, where 0 < ig,i1,...,0m < p—1, then

O-fiC) o

Jj=0

Here (8) =1 and (:LJ> =0 if nj <1j.

To prove this theoremj, we need some additional techniques. Let p be a
prime, and let f(z) and g(z) be two polynomials with integer coefficients.
We say that f(z) is congruent to g(z) modulo p, and write f(z) = g(z)
(mod p) if all of the coefficients of f(x) — g(z) are divisible by p. (Note
that the congruence of polynomials is different from the congruence of the
values of polynomials. For example, z(x + 1) # 0 (mod 2) even though
x(x 4+ 1) is divisible by 2 for all integers x.) The following properties can
be easily verified:

(a) f(z) = f(z) (mod p);

(b) if f(x) = g(x) (mod p), then g(a)

(<) if (2) = g(x) (mod p) and g(z) =

f(@) =h(z) (mod p);

(d) if f(z) = g(x) (mod p) and f1(z) = ¢g1(z) (mod p), then

= f(z) (mod p);
h(z) (mod p), then

f(@) £ fi(z) = g(z) £ g1(z)  (mod p)

2Ernst Eduard Kummer (1810-1893), German mathematician who’s main achieve-
ment was the extension of results about integers to other integral domains by introducing

the concept of an ideal.
3 Prangois Edouard Anatole Lucas (1842-1891), French mathematician best known

for his results in number theory. He studied the Fibonacci sequence and divised the test

for Mersenne primes.
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and

f(@)i(z) = g(2)g1(z)  (mod p).

Proof. By property 7), the binomial coefficients (Z) where 1 < k <
p — 1, are divisible by p. Thus,

(I+2)P =142 (mod p)

and
I+ =[1+2)fP=[1+2"P =1 + 2t (mod p),

and so on; so that for any positive integer r,
(14+2z)” =142 (mod p)

by induction.
We have

T TR
=14 x)™[Q+2)P" .. [1+ x)pm]nm
(I+z)™(142”)™ ...(1_~_mpm)nm (mod p).

The coefficient of 2% in the expansion of (1 + x)" is (n) On the other
i

hand, because i = ig+i1p+- - - +4,,p™, the coefficient of 2° is the coeflicient

of i (zP)" ... (zP" ) which is equal to (T_LO> (m) (nm> Hence

10 11 Im

() (2)

as desired. O

Theorem 10.2.2. (Kummer) Let n and i be positive integers with i < n,
and let p be a prime. Then p' divides (n) if and only if t is less than or
i

equal to the number of carries in the addition (n — i) + i in base p.
Proof. We will use the formula

n — Sp(n)

ep(n) = p—1

; 2)

where e, is the Legendre’s function and Sp,(n) is the sum of digits of n in

base p (see Section 6.5). We actually prove that the largest nonnegative
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n

integer ¢ such that p* divides ( ) is exactly the number of carries in the
i

addition (n — %) 4 ¢ in base p.

Let n! = aam_1..- a0,y i) = bpbp_1 ... bo,, (n—14)! = (Ga=1---c0)p-
Because 1 < i < n, it follows that k,I < m. Without loss of generality,
we assume that k < I. Let a,b,c, and ¢’ be integers such that p®||n!, p°||i!,

’ n
pl[(n —14)!, and pt || ( ) Then t/ =a—b—c.
i

From formula (2) we have

a_n—(am+amf1+~-~+ao)
- )

p—1
b_i_(bk+bk—1+"'+bo)
= o1 ,
. n—i)—(a+c-1+-+co)
p—1 '
Thus
t,_—(am+-~-+ao)+(bk+-~-+bo)+(cz+-~-+co) 3)

p—1

On the other hand, if we add n — ¢ and 7 in base p, we have

by br—1 ... b1 b
C| Cl—1 ‘e Ck Ck—1 ‘e C1 Co
Ay  Am—-1 .- a aj—1 ... ar QAp—1 ... a1 Qo

Then we have either by + ¢g = ao (with no carry) or by + ¢o = ag + p
(with a carry of 1). More generally, we have

bo + co = ag + a1 p,

by +c1 + a1 = ay + azp,

by + ¢ + a2 = az + azp,

bm+cm+am:am7

where a; denotes the carry at the (i — 1)** digit from the right. (Note also
that b; = 0 for j > k and that ¢; = 0 for j > [.) Adding the above equations
together yields

(bo+"'+bk)+(00+"'+cl):(ao+"'+am)+(p—1)(a1+"'+am)~
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Thus, equation (3) becomes
t'=a1+- -+ am,

as desired. O

Problem 10.2.1. Let n be a positive integer. Prove that the number of
ke {0,1,...,n} for which (Z) is odd is a power of 2.

Solution. Let the base 2 expansion of n be 2°ng + 2 + - -+ + 2%n,,
where n; € {0,1} for each i. Then for any k = 2%kq + 2'ky + - - - + 2%, we

have
<Z> - (Z(f) (le) (ZZ) (mod 2)

by Lucas’ theorem. Thus (Z

be the number of n;’s equal to 1. Then the values of k € {0,1,...,2%"1 -1}

> is odd if and only if k; < n,; for each i. Let m

for which (Z) is odd are obtained by setting k; = 0 or 1 for each of the m
values of 7 such that n; = 1, and k; = 0 for the other values of i. Thus there

are 2™ values of k in {0, 1,...,2%"1 —1} for which (Z) is odd. Finally, note
that for k& > n, (Z) = 0 is never odd, so the number of k € {0,1,...,n}

for which [ ) is odd is 2™ a power of 2.

k

Problem 10.2.2. Determine all positive integers m, n > 2, such that

(n;k) 18 evenforkzlﬂ,...,{gJ.

(1999 Belarussian Mathematical Olympiad)
Solution. Suppose that p =2, a =2°—1,and as_1 = as_9 =--- =ag =
1. For any b with 0 < b < 2% — 1, each term (Zl> in the above equation

equals 1. Therefore, (Z) =1 (mod 2).

This implies that n+1 is a power of two. Otherwise, let s = |log, n] and
let

25t 9 n o n
= — s _ = - < —_— = —,
k=n—-(2°-1)=n 5 Sn-—g5 =3
—k 25 -1
Then (n k > = ( i ) is odd, a contradiction.

Conversely, suppose that n = 2° — 1 for some positive integer s. For
k=1,2,..., 5 there is at least one 0 in the binary representation of
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a =n —k (not counting leading zeros, of course). Whenever there is a 0 in

the binary representation of n — k, there is a 1 in the corresponding digit
of b = k. Then the corresponding (Zl) equals 0, and by Lucas’ Theorem,
i

n—=k\ .
is even.

k

Therefore, n = 2° — 1 for integers s > 2.

2
Problem 10.2.3. Prove that (k)’ k=1,2,...,2" — 1, are all even

and that exactly one of them is not divisible by 4.

Solution. All these numbers are even, since

2m\ 2nam—1
k) k\k-1
and 2" /k is different from 1 for all k =1,2,...,2" — 1.

27’7.
From the same relation it follows that ( I ) is a multiple of 4 for all k&

different from 2"~ !. For k = 2"~ ! we have

2m 2" —1
=2 .
<2n—1> <2n—1 _ 1)

n

But from Lucas’ theorem it follows that ( 1) is odd, since 2" — 1

gn—1 _

1
contains only 1’s in its binary representation and (k =1lifk=0orl.

This solves the problem.

Proposed problems

Problem 10.2.4. Let p be an odd prime. Find all positive integers n
n n

such that ey " are all divisible by p.
2 n—1

1
Problem 10.2.5. Let p be a prime. Prove that p does not divide any

of (T) R ( " 1) if and only if n = sp* — 1 for some positive integer k
n —

and some integer s with 1 < s <p— 1.
Problem 10.2.6. Prove or disprove the following claim: For any integer

k > 2, there exists an integer n > 2 such that the binomial coefficient |
1

is divisible by k for any 1 <i<n — 1.

(1999 Hungarian-Israel Mathematical Competition)
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Miscellaneous Problems

Problem 11.1. Find all positive integers x,y, z which satisfy conditions:
T4y > 2z and 2 +y? — 222 = 8.

(2003 Romanian Mathematical Olympiad)

Solution. There are two possible cases:

Casel.z >y > 2.

We denote x —z=a >0, y—2 =b> 0, a > b. One obtains the equation
2z(a +b) + a® + b2 = 8. When z > 3, there are no solutions. For z = 2,
we get (a + 2)% + (b + 2)? = 16, which again has no solution. When z = 1
we obtain solutions (x,y,2) = (3,1,1) or (z,y,2) = (1,3,1). When z = 0,
a? +b?> = 8 and we get the solution (z,v,2) = (2,2,0).

Case Il. z > z > .

Note again that * — z = a, y — z = b and obtain the solution (z,y, z) =
(n+2,n—2,n)or (z,y,2) =(n—2,n+2,n).

Problem 11.2. Let n be a positive integer. Find all integers that can be

written as:

for some positive integers a1, as, ..., ay.
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1

1
Solution. First, observe that k = — + — +--- + 27 then
al ag Ay,

1
k§1+2+3+---+n=@.

1
We prove that any integer k € {17 2,0, M} can be written as

requested.
1
Fork:Lputal:a2:-~-:an:%.
Fork=n,seta1 =1,a2=2,..., a, =n.
n(n+1) )
For1<k<n,letak_1:1andai:T—k+lforz;&k—1.
Thus
nin+1)
; — —k+1
1 2 n k—1 i
— ==t Y — =14 2 — k.
a1 a2 G 1 — a; nin+1)
ikk—1 T_k+l
1
Forn<l<:<n(n2+ ),Writekas

k=n+pr+p2+--+pi,

with1 <p; <---<ps<p1<n-1
Setting ap,+1 = ap,4+1 = -+ = ap,+1 = 1 and else a; = j we are done.

Problem 11.3. Find all the positive integers a < b < ¢ < d with the

property that each of them divides the sum of the other three.
Solution. Since d|(a+b+c) and a+b+c < 3d, it follows that a+b+c = d

ora-+b+c=2d.
Casei). If a+b+c=d, as a|(b+ ¢+ d), we have a|2d and similarly b|2d,

cl2d.
1 1 1
Let 2d =ax =by =cz, where 2 < z <y <z. Thus — + -+ — = =
x Yy z 2
1 1 1
1° If z = 3, then — + — = —. The solutions are
z y 6
(x,y) ={(42,7), (24,8), (18,9), (15,10)},
hence
(a,b,c,d) € {(k, 6k, 14k, 21k), (k, 3k, 8k, 12k), (k, 2k, 6k, 9k),
(2k, 3k, 10k, 15k), (k, 3k, 8k, 12k)},

for k£ > 0.
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1 1 1
2° If z =4, then — + — = =, and
z y 4

(z,y) = {(20,5), (12,6)}.
The solutions are
(a,b,¢,d) = (k,4k, 5k, 10k) and (a,b,c,d) = (k, 2k, 3k, 6k),

for k > 0. L1 5
3°If z=5, then — + — = 0 and (3z — 10)(3y — 10) = 100.
T y
As 3z — 10 = 2 (mod 3), it follows that 3z — 10 = 20 and 3y — 10 = 5.
Thus y = 3, false.
11 1 1 1 1 1
4° If z > 6 then — + — + — < = + = + = = — so there are no solutions.
xr y =z 6 6 6 2
Case ii). If a + b+ ¢ = 2d, we obtain a|3d, b|3d, c|3d.
1 2
Then3d:a$:by:cz,Withm>y>z>3and—+—+—=§.Since
x Yy =z
1 1 1 37

+ -+ - = — < -, so there

>4 y>52>6 h. 1+1+1<
X z we nave — — — —= =
=HY=22= z Yz 5460 3

=6
are no solutions in this case.
Problem 11.4. Find the greatest number that can be written as a product

of some positive integers with the sum 1976.
(18" TMO)

Solution. Let z1,zs,...,z, be the numbers having the sum x1 + 22 +
<o+ +x, = 1976 and the maximum value of the product x1 - x3 -+ -, = p.

If one of the numbers, say x1, is equal to 1, then 1 + 22 = 1+ 29 > x5 =
x122. Hence the product (x14x2)-x3 - - - o, is greater than z1-xa ...z, = p,
false. Therefore x, > 2 for all k.

If one of the numbers is equal to 4 we can replace him with two numbers
2 without changing the sum or the product.

Suppose that xp > 5 for some k. Then x; < 3(zr — 3), so replacing the
number xj with the numbers 3 and x; — 3, the sum remains constant while
the product increases, contradiction.

Therefore all the numbers are equal to 2 or 3. If there are more than
3 numbers equal to 2, we can replace them by two numbers equal to 3,
preserving the sum and increasing the product (as 2-2-2 < 3 - 3). Hence
at most two terms equal to 2 are allowed. Since 1976 = 3 - 658 + 2 the

maximum product is equal to 2 - 3658,
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Problem 11.5. Prove that there exist infinitely many positive integers

that cannot be written in the form
m‘;’—i—xg—i—xg—i—x?l—l—xél
for some positive integers x1,x2,x3, T4, Ts.
(2002 Belarussian Mathematical Olympiad)

Solution. For each integer N, we consider the number of integers in
[1, N] that can be written in the above form. Because 1 < N %, there are
at most N3 ways to choose ;. Similar argument applies to the other z;s.
Therefore, there are at most N3iNs5N7NsNit = N3is combinations. So
there are at least N — N 5465 integers not covered. It is easy to see that this
value can be arbitrarily large as N approaches infinity. Therefore, there
exist infinitely many positive integers that cannot be written in the form
o3 + 25 + x5 + 2 + it

Proposed problems

Problem 11.6. Let a, b be positive integers. By integer division of a2 +b?
to a + b we obtain the quotient ¢ and the remainder r. Find all pairs (a, b)
such that ¢ +r = 1977.

(19" IMO)

Problem 11.7. Let m,n be positive integers. Show that 25" — 7™ is
divisible by 3 and find the least positive integer of the form |25™ —7™ —3™|,

when m,n run over the set of non-negative integers.
(2004 Romanian Mathematical Regional Contest)
Problem 11.8. Given an integer d, let
S = {m? + dn*m,n € Z}.

Let p,q € S be such that p is a prime and r = 9 is an integer. Prove
p

that r € S.
(1999 Hungary-Israel Mathematical Competition)

Problem 11.9. Prove that every positive rational number can be rep-

resented in the form
a® + b3
3+ d?
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where a, b, c,d are positive integers.
(1999 IMO Shortlist)

Problem 11.10. Two positive integers are written on the board. The
following operation is repeated: if a < b are the numbers on the board, then
a is erased and ab/(b—a) is written in its place. At some point the numbers

on the board are equal. Prove that again they are positive integers.
(1998 Russian Mathematical Olympiad)

Problem 11.11. Let f(z) + ao + a1z + -+ - + apma™, with m > 2 and
am # 0, be a polynomial with integer coefficients. Let n be a positive
integer, and suppose that:

i) ag,as,...,a, are divisible by all the prime factors of n;

ii) a; and n are relatively prime.

Prove that for any positive integer k, there exists a positive integer c
such that f(c) is divisible by n*.

(2001 Romanian IMO Team Selection Test)

Problem 11.12. Let ,a,b be positive integers such that z*t? = abb.
Prove that ¢ = z and b = z”.

(1998 Iranian Mathematical Olympiad)

Problem 11.13. Let m,n be integers with 1 < m < n. In their decimal
representations, the last three digits of 1978™ are equal, respectively, to
the last three digits of 1978™. Find m and n such that m + n is minimal.

(20th TMO)
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12
Divisibility

12.1 Divisibility
Problem 1.1.10. Show that for any natural number n, between n? and

(n+1)% one can find three distinct natural numbers a, b, c such that a® + b?

is divisible by c.
(1998 St. Petersburg City Mathematical Olympiad)
Solution. (We must assume n > 1.) Take
a=n?+4+2, b=n’4+n+1, c=n’>+1.

Then a? + b% = (2n% + 2n + 5)c.
Problem 1.1.11. Find all odd positive integers n greater than 1 such
that for any relatively prime divisors a and b of n, the number a+b—1 is

also a divisor of n.
(2001 Russian Mathematical Olympiad)

Solution. We will call a number ”good” if it satisfies the given condi-
tions. It is not difficult to see that all prime powers are good. Suppose n is
a good number that has at least two distinct prime factors. Let n = p”s,
where p is the smallest prime dividing n and s is not divisible by p. Be-

cause n is good, p + s — 1 must divide n. For any prime ¢ dividing s,
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s<p+s—1<s+q,soq does not divide p + s — 1. Therefore, the only
prime factor of p+ s —1is p. Then s = p —p+ 1 for some ¢ > 1. Because
p¢ must also divide n, p¢ + s — 1 = 2p¢ — p divides n. Because 2p°~! — 1

has no factors of p, it must divide s. But a simple computation shows that
p—1 p°—p+1 p+1 1
2 2pe—1 —1 2
Problem 1.1.12. Find all positive integers n such that 37~ ' + 57!

divides 3™ + 5".

, therefore 2p°~" — 1 cannot divide s.

(1996 St. Petersburg City Mathematical Olympiad)

Solution. This only occurs for n = 1. Let s,, = 3™ 4+ 5™ and note that
Sn=(34+5)$p-1—3"5"8p_2

SO S,_1 must also divide 3-5-s,_5. If n > 1, then s,_1 is coprime to 3
and 5, so s,,_1 must divide s, _5, which is impossible since s,,_1 > S,,_2.
Remark. Alternatively, note that 1 <
3" 4 5"
have —~

3n—1 4 5n-1
Problem 1.1.13. Find all positive integers n such that the set

< 5 so we can only

€ {2,3,4} cases which are easily checked.

{n,n+1,n+2,n+3,n+4,n+5}

can be split into two disjoint subsets such that the products of elements in

these subsets are the same.
(12th IMO)

Solution. At least one of six consecutive numbers is divisible by 5. From
the given condition it follows that two numbers must be divisible by 5.
These two numbers are necessarily n and n + 5. Therefore n and n + 5
are in distinct subsets. Since n(n 4+ 1) > n + 5, it follows that a required
partition cannot be considered with subsets of different cardinality. Thus
each subset must contain three numbers. The following possibilities have
to be considered:

a) {n,n+2,n+4}uU{n+1,n+3,n+5}

b) {n,n+3,n+4}U{n+1,n+2,n+ 5}

Incasea),n<n+1l,n+2<n+3andn+4<n+5.

In case b), the condition of the problem gives:

nn+3)(n+4)=mn+1)(n+3)(n+5).
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We obtain n? 4+ 5n + 10 = 0 and this equation has no real solution.

Remark. One can prove that if p is a prime of the form 4k 4 3, then
one cannot partition p — 1 consecutive integers in two classes with equal
product. This problem is the particular case p = 7.

Problem 1.1.14. The positive integers dy,da, . . ., d, divide 1995. Prove
that there exist d; and d; among them, such that the numerator of the

reduced fraction d;/d; is at least n.
(1995 Israeli Mathematical Olympiad)

Solution. Note that 3-5-7-19 = 1995. If the chosen divisors include
one divisible by 19 and another not divisible by 19, the quotient of the two
has numerator divisible by 19, solving the problem since n < 16. If this is
not the case, either all divisors are or divisible by 19 or none of them has
this property, and in particular n < 8. Without loss of generality, assume
the divisors are all not divisible by 19.

Under this assumption, we are done if the divisors include one divisible
by 7 and another not divisible by 7, unless n = 8. In the latter case all of
the divisors not divisible by 19 occur, including 1 and 3-5 -7, so this case
also follows. We now assume that none of the chosen divisors is divisible
by 4, so that in particular n < 4.

Again, we are done if the divisors include one divisible by 5 and another
not divisible by 5. But this can only fail to occur if n = 1 or n = 2. The
former case is trivial, while in the latter case we simply divide the larger
divisor by the smaller one, and the resulting numerator has at least one
prime divisor and so is at least 3. Hence the problem is solved in all cases.

Problem 1.1.15. Determine all pairs (a,b) of positive integers such that
ab® + b+ 7 divides a®b+ a + b.

(391" IMO)
Solution. From the divisibility ab? + b + 7|a%b + a + b we obtain:
ab® + b+ 7b(a*b +a+b) —a(ab®> +b+7) = ab® +b+ 76 — Ta.

When b? — 7a = 0, it follows b%> = Tk, a = Tk?. Observe that all pairs
(Tk?,7k), k > 1 are solutions for the problem.
Suppose b2—7a > 0. Then ab?>+b+7 < b>—7a and we get a contradiction:

B2 —Ta<b><ab®>+b+T.
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Suppose b? — 7a < 0. Then ab? + b+ 7 < Ta — b?. This is possible only
for b2 < 7, i.e. either b=1 or b = 2. If b = 1, we obtain a = 11 or a = 49.

If b =2, we obtain 4a + 9ja+22 = 4a+9<a+22 = 3a <13. This
case cannot give a solution.

Hence, the solutions of the problem are: (7k%,7k), (11,1) and (49, 1).

Problem 1.1.16. Find all integers a,b,c with 1 < a < b < ¢ such that
(a—1)(b—1)(c—1) is a divisor of abc — 1.

(3374 IMO)

Solution. It is convenient to notea—1 =z, b—1 =y and ¢c—1 = 2. Then
we have the conditions: 1 <z <y < z and zyz|zy + yz + 22+ 2 +y + 2.
The idea of the solution is to point out that we cannot have xyz <
xy + yz + zx + x + y + 2 for infinitely many triples (z,y,2) of positive
integers. Let f(z,y, z) be the quotient of the required divisibility.
From the algebraic form:
1 1 1 1

1 1
fle,y,2) ==+ -+ -+ —+ —+ —
r Yy z xYy yz 2w

we can see that f is decreasing function in one of the variables z,y, z. By

symmetry and because x,y, z are distinct numbers,
5
f(x7yaz) < f(1,273) =2+ 6 < 3.

Thus, if the divisibility is fulfilled we can have either f(z,y,z) = 1 or
f(z,y,2) = 2. So, we have to solve in positive integers the equations

xy+yz+ze+ax+y+z=kayz (1)

where k =1 or k = 2.

Observe that f(3,4,5) = % < 1. Thus z € {1,2}. Also f(2,3,4) = g—i <
2. Thus, for £ = 2, we necessarily have k = 1. The conclusion is that only
three equations have to be considered in (1).

Case 1. x =1 and k = 1. We obtain the equation:
142y +2)+yz=yz.

It has no solutions.

Case 2. x = 1 and k = 2. We obtain the equation:

1+ 2(y+2) = yz.
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Write it under the form: (y—2)(z—2) =5 and obtainy—2 =1, 2—2 = 5.
It has a unique solution: y =3, z = 7.
Case 3. x =2 and k = 1. We obtain the equation:

24+3(y+2) =y=.

By writing it under the form: (y — 3)(z — 3) = 11 we find y — 3 = 1,
z — 3 = 11. Thus, it has a unique solution: y =4, z = 15.

From Case 2 and Case 3 we obtain respectively: a =2, b =4, ¢ = 8 and
a=3,b=25, c=16. These are the solutions of the problem.

Problem 1.1.17. Find all pairs of positive integers (x,y) for which

22 + 2
r—y

s an integer which divides 1995.
(1995 Bulgarian Mathematical Olympiad)

Solution. It is enough to find all pairs (z,y) for which z > y and x2 +
y? = k(x — y), where k divides 1995 = 3 -5 -7 - 19. We shall use the
following well-known fact: if p is prime of the form 4q + 3 and if it divides
22 + 9?2 then p divides z and y. (For p = 3, 7, 19 the last statement can be
proved directly). If k is divisible by 3, then x and y are divisible by 3 too.
Simplifying by 9 we get an equality of the form 22 +4? = ki(x1 —y1), where
ky divides 5 - 7 - 19. Considering 7 and 19, analogously we get an equality
of the form a? + b? = 5(a — b), where a > b. (It is not possible to get an
equality of the form a? + b? = a — b). From here (2a — 5)? + (2b+ 5)? = 50,
ie.a=3,b=1,ora=2,b=1. The above consideration implies that the
pairs we are looking for are of the form (3¢, ¢), (2¢, ¢), (¢, 3¢), (¢, 2¢), where
c=1,3,719,3-7,3-19, 7-19, 3-7-19.

Problem 1.1.18. Find all positive integers (x,n) such that ™ + 2™ 4+ 1
is a divisor of x™t! + 27+ 41,

(1998 Romanian IMO Team Selection Test)

Solution. The solutions are (z,n) = (4,1) and (11,1). If n = 1, we need
r+3=x+2+122+4+1=22+5= (x+3)(z—3) + 14, so x + 3 divides
14 and x =4 or 11. Suppose n > 2. For x € {1, 2,3} we have

T4+2"+ 1< 142" 41 <2(1+2" + 1),

2" 4 2n 41 < 2n L pontl ] <92 42" 4 1),
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2(3" 4+ 2" +1) < 3nF 42l 4 1 < 3(3" 42" + 1),

so 2" +2"+1 does not divide 2" 1 +2" 141, For x > 4, 2" = 2" /242" /2 >
22119 4 222, 50

(2" + 1)z < ((2" +1)* +2%)/2
= (22" 42" 1 4 2?)/2 < 2 gt 2" 2.

Therefore
(x—D(z"+2"+1)=a" 2" 4o — 2" —2" 1

<z pontt 1 <p(a™ + 2" 4+ 1);

again 2" 4+ 2" + 1 does not divide "1 +27+! 4+ 1. So the only solutions
are (4,1) and (11,1).

Problem 1.1.19. Find the smallest positive integer K such that every
K -element subset of {1,2,...,50} contains two distinct elements a,b such
that a + b divides ab.

(1996 Chinese Mathematical Olympiad)

Solution. The minimal value is k = 39. Suppose a,b € S are such that
a+ b divides ab. Let ¢ = ged(a, b), and put a = cay, b = cby, so that a; and
by are relatively prime. Then c(aj + b1) divides c?a1by, so aj + by divides
ca1by. Since a; and b; have no common factor, neither do a; and ay + by,
or by and a; + b;. In short, a; + by divides c.

Since S C {1,...,50}, we have a + b < 99, so c¢(ay + b1) < 99, which
implies a1 +b1 < 9; on the other hand, of course a; +b; > 3. An exhaustive

search produces 23 pairs a, b satisfying the condition:

a1 +b =3 (6,3),(12,6),(18,9), (24,12),

(30,15), (36, 18), (42,21), (48, 24)
a;+b; =4 (12,4),(24,8),(36,12), (48, 16)
ar+b =5 (20,5),(40,10), (15,10), (30, 20), (45, 30)
a +b =6 (30,6)
G +b =7 (42,7), (35, 14), (28, 21)
a1 +by =8 (40 24)
a1+b1 =9 (45 36)
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12.2  Prime numbers

Problem 1.2.10. For each integer n such that n = pipapsps, where

D1,P2,D3,pa are distinct primes, let
di=1<dy<d3s<---<dig=n

be the sixzteen positive integers which divide n. Prove that if n < 1995, then
dg — dg # 22.

(1995 Irish Mathematical Olympiad)

Solution. Note that 35-57 = 1995 =2-3-7-19. Suppose that n < 1995
and dg — dg = 22; then dgdy = n, so dg < 35. Moreover, dg cannot be
even since that would make n divisible by 4, whereas n has distinct prime
factors. Hence dg, dg and n are odd.

The divisors dy, .. ., dg each are the product of distinct odd primes, since
they divide n. Since 3 -5 -7 > 35, none of dy,...,dg is large enough to
have three odd prime factors, so each is either prime or the product of two
primes. Since n only has four prime factors, four of the d; must be the

product of two odd primes. But the smallest such numbers are
15,21,33,35,...

and so we must have dg > 35, contrary to assumption.

Problem 1.2.11. Prove that there are infinitely many positive integers
a such that the sequence (zp)n>1, 2n = n* + a, does not contain any prime
number.

(11t IMO)

Solution. To consider all positive integers of the form n* +a, n > 1,
means to consider all values of the polynomial P(X) = X% + a in the
positive integers. A decomposition of the polynomial P(X) gives us de-
compositions of the numbers n* 4 a, unless the case of factors taking values
1.

The polynomial P(X) can have a decomposition in integer polynomials

only into quadratic factors:
P(X)=(X?2+mX +n)(X2+m/X +2/).
Such a decomposition is possible if and only if:

m+m' =0, mm' +n+n" =0, mn +m'n=0and nn' = a.
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We obtain: m’ = —m, n =n/, m? —2n =0 and n? = a.

Therefore, there is a unique possibility:
X*4ta=(X*+mX +n)(X?—mX +n).

This case may fulfill when m = 2k, n = 2k? and a = 4k*, with k > 1.
Problem 1.2.12. Let p,q,r be distinct prime numbers and let A be the
set
A= {p“qbrc : 0<a,b,c<5}

Find the smallest integer n such that any n-element subset of A contains

two distinct elements x,y such that x divides y.
(1997 Romanian Mathematical Olympiad)

Solution. Define an order relation on A by setting p®¢®r¢ < p*¢Prre
iff a < ay, b <by, c<c. We must find thus the longest antichain with
respect to this relation, that is the maximal number n such that there is
B C A with |B] = n and no two elements of B are comparable. The answer
will then be n + 1.

From now on, identity p®¢®r¢ with (a,b,c) and regard it as a laticial

point in R3. One can easily check that the set
B ={(a,b,¢c) | a,b,c€{0,1,...,5}, a+b+c=8}

has 27 elements and that it is an antichain. We will prove that any set with
28 elements contains two comparable elements. Of course, it suffices to find
27 chains which partition {(a,b,c) | 0 < a,b,¢ < 5} and such that each
chain has a unique representation from B. Take A = {(a,b) | 0 < a,b < 5}
and partition it into 6 chains (draw a picture!)

A1 ={(0,0),(0,1),...,(0,5),(1,5),...,(5,5)},

Ax = {(1,0), (1,1),...,(1,4),(2,4),....(5,4)},
Az ={(2,0),(2,1),...,(2,3),(3,3),...,(5,8)},
A1 =1{(3,0),(3,1),(3,2),(4,2), (5,2)},

A5 ={(4,0),(4,1), (5, 1)},

As = {(5,0)}.

Next define A1; = {(a,b,j) | (a,b) € A1} and similarly for Ay, A3. We

have found 18 chains till now.
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For (a,b) € AyUA5UAg we define the chain A, ) = {(a,b,7) |0 < j < 5}
and we have 9 chains, for a total of 27 chains.
Problem 1.2.13. Prove Bonse’s inequality:

pip2...Pn > pi+1

for n > 4, where py = 2, po = 3,... is the increasing sequence of prime
numbers.

Solution. Let us define Ay = pips...pr and ap = kA,_1 — pn for
1 <k < p, — 1. Observe that these numbers are relatively prime. Indeed,
a prime common divisor of ag, and ax, would divide (k1 — k2)A,,—1 and
since ged(ag,,pn) = 1, this divisor would be p1,...,p,—1, which is clearly
impossible. Of course, this implies that ax > pp4x (since ay is relatively
prime with pq,...,pn—1). Thus for k = p,, — 1 we have 4,, — A,,_1 — p, >
Dpn4+n—1 and SO P1P2...Pn > Pp.4n—1 > DP3n—1 for n > 5. From here we
find that for n > 6 we have p;...p, > (pl...p[%])z > pg[%]_l > p%H.
For n = 5 one can easily check the inequality.

Problem 1.2.14. Show that there exists a set A of positive integers with
the following property: for any infinite set S of primes, there exist two
positive integers m € A and n & A each of which is a product of k distinct
elements of S for some k > 2.

(35" IMO)

Solution. There are several constructions for such A, involving different
ideas about the decomposition of integer numbers.

First example. Let p1 < p2 < --- < p, < ... be the increasing se-
quence of all prime numbers. Define A being the set of numbers of the
form p;,pi, - .. pi, Where iy < iz < --- < i and i = p;,. For example
3:5:7€A4;3-11-13€¢ Aandb5-7-11 ¢ A;3-5-7-11 ¢ A.

We will see that A satisfies the required condition. Let S be an infinite
set of prime numbers, say ¢1 < g2 < --- < qn < ... Take m = qig2...¢qq,
and n =¢qiq2...q9q,+1. Thenm € A and n ¢ A.

0o

Second example. Define A = U A; where A; is the set of numbers
i=1
which are product of 7 4+ 1 distinct primes which are different from p;. For

example 3:-5-7€ A3,2-3-7-11€ Agand2-3-7T¢& Ay,3-5-7-13 & As.
Let S be an infinite set of prime numbers, say g1 < g2 < -+ < @n < ...
Suppose that ¢ = p;,. If i1 > 1, note i1 = k. Then n = qiq2...qr+1 €
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A, because it contains prime factor ¢1 = p;; = pr. The number m =
G245 - - - Qr+2 contains k + 1 factors, all different from py, = ¢1. Thus m € A.
If i1 = 1, take k = i3 and the same construction will answer the question.

Third example. Let P be the set of all positive primes and let P; C
P, C--- C P, C... be an ascending chain of finite distinct subsets of P,

such that P = U P;. Define A to be the set of elements of the form
i=1

a =Dpip2...Pk

k=i <ig < -+ <y andp1 E-Pil \.Pil,hpg EPiQ,...7pk EPik~
Let S be an infinite set of prime numbers and let S; = SN P;. It is
obvious that S; € Sy C --- C S, C ... This chain is not stationary

o0
because S = U S;. Then, it contains an infinite subchain with distinct

i=1
sets:

Siy, €S, C---C 8, C...

Suppose that S;, = S;,,., = = Sinyi-1 C Sipyy- Set iy =k > 1
and choose p1 € Sil \Sil—la p2 € 51'2 \ 51'2_1,..., Pr € Sik \Sik—l and
Prt1 € Sipyy \ Sip- Then m = pipa...pp € Aand n = pap3...ppy1 € A
because ps &€ Si; = Sk.

Problem 1.2.15. Let n be an integer number, n > 2. Show that if

n
k%4 k+n is a prime number for any integer number k, 0 < k < 3 then

k? + k +n is a prime number for any k, 0 < k <n — 2.
(28" IMO)

Solution. It is not difficult to check that the property is verified for
n = 2,3. So, we may suppose n > 5 and assume the contrary: k% + k +n
is prime for 0 < k < ,/g and there exists [, ,/g < [ < n — 2 such that
1?2 + 1 4 n is not prime. Let p be the least number [ such that {2 4+ + n is
composed number and let p? + p + n = ab be a nontrivial decomposition,
such that 1 < a < b. Then, [?> + [+ n is a prime for all [, [ < p.

We prove first that a > p + 1.
Assuming the contrary, one obtains 0 < p —a < p and

(p—a)+(p—a)+n=p"+p+n+ala—2p—1)=alb+a—2p—1).
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Since (p—a)?+(p—a)+n is a prime number, it follows that b+a—2p—1 =1
and then, a + b = 2(p + 1). By AM-GM inequality,

(a+b)?
4

ab < = (p+1)>2

Since ab = p? + p + n, it follows that: p?> +p+n < (p+ 1)2. From the last
inequality, p > n — 1 and this contradicts the choice of p. The conclusion
isa>p+1.

Since n < 3p?, p? +p+n < 4p? +p < (2p+ 1)2. Taking in account that
p? +p+n = ab, we have ab < (2p + 1)? and thus, a < 2p + 1.

We may repeat the previous argument: 0 < a —p — 1 < p and then
(a—p—1)2+(a—p—1)+n is prime a number. A standard computation
gives:

(a—p—124+(a—p—1)+n=p>+p+n+ala—2p—1)=a(b+a—2p—1).

We obtain, again b+a =2p+2=2(p+1).
On the other hand:

a+b>2Vab=2\/pP? +p+n>2VpP +p+p+1=2(p+1).

Thus, we obtain a contradiction, so our initial assumption was incorrect.

Remark. The problem is related to the famous example of Euler of a
polynomial generator of primes: 22 +2x+41 produces primes for 0 < z < 39.
The problem shows that it suffices to check the primality only for the first
4 values of z.

Problem 1.2.16. A sequence q1, qo, - .. of primes satisfies the following
condition: for n > 3, q, is the greatest prime divisor of ¢p—1 + Gn—2+ 2000.
Prove that the sequence is bounded.

(2000 Polish Mathematical Olympiad)

Solution. Let b,, = max{qy, ¢,+1} for n > 1. We first prove that b, <
b, 4+ 2002 for all such n. Certainly gn+1 < by, so it suffices to show that
Gn+2 < b, + 2002. If either g, or g,+1 equals 2, then we have g,12 <
Gn + qnt1 + 2000 = b, + 2002. Otherwise, ¢, and ¢,+1 are both odd, so
Gn + qn+1 + 2000 is even. Because g, 12 # 2 divides this number, we have

1 1
Gtz < 5 (@0 + Gugr +2000) = 3 (o + Gug) + 1000 < by, +1000.

This proves the claim.
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Choose k large enough so that b < k-2003! 4 1. We prove by induction
that b, < k-2003!+ 1 for all n. If this statement holds for some n, then
bnt1 < by + 2002 < k- 2003! + 2003. If byq1 > k- 2003! + 1, then let
m = by41 — k- 2003!. We have 1 < m < 2003, implying that m|2003!.
Hence, m is a proper divisor of k - 2003! + m = b,11, which is impossible
because by, 41 is prime. Thus, ¢, < b, < k-2003! + 1 for all n.

Problem 1.2.17. Let a > b > ¢ > d be positive integers and suppose

ac+bd=0b+d+a—-c)(b+d—a+c).
Prove that ab + cd is not prime.
(424 IMO)

Solution. The given equality is equivalent to a? — ac+ c? = b? +bd + d>.
Hence

(ab+ cd)(ad + be) = ac(b® + bd + d*) + bd(a® — ac + ¢?),
or equivalently,
(ab+ cd)(ad + be) = (ac + bd)(a® — ac + ¢2). (1)
Now suppose that ab + cd is prime. It follows from a > b > ¢ > d that
ab + cd > ac+ bd > ad + bc; (2)
hence ac + bd is relatively prime with ab + c¢d. But then (1) implies that

ac + bd divides ad + be, which is impossible by (2).

12.3 The greatest common divisor and the least
common multiple

Problem 1.3.9. The sequence ay,as, ... of natural numbers satisfies
ged(ai, a;) = ged(i, §) for all i # j.
Prove that a; =i for all 3.
(1995 Russian Mathematical Olympiad)

Solution. For any integer m, we have (an,, a2m) = (2m, m) and so m|ay,.

This means that for any other integer n, m divides a,, if and only if it divides
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(am,an) = (m,n). Hence a,, has exactly the same divisors as n and so must
equal n for all n.

Problem 1.3.10. The natural numbers a and b are such that

a+1 b+1
n +
b a

is an integer. Show that the greatest common divisor of a and b is not

greater than v/a + b.
(1996 Spanish Mathematical Olympiad)

Solution. Let d = ged(a,b) and put a = md and b = nd. Then we have

md+1 nd+1 m2d+m+n3d+n
—|— p—
nd md mnd

is an integer, so that in particular, d divides m?d + m 4+ n?d + n and also
m + n. However, this means d < m +n, and so d < \/d(m +n) = Va+b.

Problem 1.3.11. The positive integers m,n, m,n are written on a black-

board. A generalized Euclidean algorithm is applied to this quadruple as
follows: if the numbers x,y,u,v appear on the board and x >y, then x —y,
Y, u+ v, v are written instead; otherwise x, y — x, u, v+ u are written in-
stead. The algorithm stops when the numbers in the first pair become equal
(they will equal the greatest common divisor of m and n). Prove that the
arithmetic mean of the numbers in the second pair at that moment equals

the least common multiple of m and n.
(1996 St. Petersburg City Mathematical Olympiad)

Solution. Note that zv + yu does not change under the operation, so it
remains equal to 2mn throughout. Thus when the first two numbers both
equal ged(m,n), the sum of the latter two is 2mn/ged(m,n) = 2lem(m, n).

Problem 1.3.12. How many pairs (x,y) of positive integers with x <y
satisfy ged(x,y) = 5! and lem(z,y) = 5012

(1997 Canadian Mathematical Olympiad)
Solution. First, note that there are 15 primes from 1 to 50:
(2,3,5,7,11,13,17,19,23,29, 31, 37,41, 43, 47).

To make this easier, let us define f(a, b) to be greatest power of b dividing
a. (Note g(50!,b) > g(5!,b) for all b < 50.) Therefore, for each prime p, we
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have either f(z,p) = f(5!,p) and f(y,p) = f(50!,p) or f(y,p) = f(5!,p)
and f(x,p) = f(50!,p). Since we have 15 primes, this gives 2'° pairs, and
clearly x # y in any such pair (since the gcd and lem are different), so there

are 214

pairs with = < y.

Problem 1.3.13. Several positive integers are written on a blackboard.
One can erase any two distinct integers and write their greatest common di-
visor and least common multiple instead. Prove that eventually the numbers

will stop changing.
(1996 St. Petersburg City Mathematical Olympiad)

Solution. If a,b are erased and ¢ < d are written instead, we have
¢ < min(a,b) and d > max(a,b); moreover, ab = cd. From this we may
conclude a + b < ¢ + d writing ab + a2 =cd+a? < ac+ ad (the latter
since (d — a)(c — a) < 0) and dividing both sides by a. Thus the sum of
the numbers never decrease, and it is obviously bounded (e.g. by n times
the product of the numbers, where n is the number of numbers on the
board); hence it eventually stops changing, at which time the numbers
never change.

Problem 1.3.14. (a) For which positive integers n do there exist positive

integers x,y such that
lem(z,y) =n!, ged(z,y) = 19987

(b) For which n is the number of such pairs x,y with x < y less than
19987

(1998 Hungarian Mathematical Olympiad)

Solution. (a) Let z = 1998a, y = 1998b. So a, b are positive integers such
that a < b, ged(a,b) = 1. We have lem(z,y) = 1998ab = 2 - 3% - 37ab = n!.
Thus n > 37 and it is easy to see that this condition is also sufficient.

(b) The answers are n = 37, 38,39, 40. We only need to consider positive
integers n > 37. For 37 < n < 41, let k = ab = n!/1998. Since gcd(a, b) = 1,
any prime factor of k£ that occurs in a cannot occur in b, and vice-versa.
There are 11 prime factors of k, namely 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31.
For each of those prime factors, one must decide only whether it occurs in
a or in b. These 11 decisions can be made in a total of 2! = 2048 ways.
However, only half of these ways will satisfy the condition a < b. Thus
there will be a total of 1024 such pairs of (z,y) for n = 37, 38, 39, 40. Since
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41 is a prime, we can see by a similar argument that there will be at least
2048 such pairs of (z,y) for n > 41.

Problem 1.3.15. Determine all positive integers k for which there exists
a function f: N — Z such that

(a) f(1997) = 1998;

(b) for all a,b € N, f(ab) = f(a) + f(b) + kf(gcd(a,b)).

(1997 Taiwanese Mathematical Olympiad)

Solution. Such f exists for £ = 0 and k = —1. First take a = b in (b)
to get f(a?) = (k +2)f(a). Applying this twice, we get

fa*) = (k+2)f(a®) = (k +2)*f(a).
On the other hand,
fla) = f(a) + f(@®) + kf(a) = (k+ 1) f(a) + f(a®)

= (k+1)f(a)+ f(a) + f(a®) + kf(a)
= (2k+2)f(a) + f(a®) = (3k +4)f(a).

Setting a = 1997 so that f(a) # 0, we deduce (k + 2)? = 3k + 4, which
has roots k = 0, —1. For k = 0, an example is given by

J5 o) = eig(pr) + -+ + eng(pn),

where m is a prime factor of 1997, g(m) = 1998 and g(p) = 0 for all primes
p # m. For k =1, an example is given by

Fr - py) = g(p1) + -+ g(pn)-
Problem 1.3.16. Find all triples (xz,y,n) of positive integers such that

ged(z,n+1) =1 and 2" +1 = y"+.

(1998 Indian Mathematical Olympiad)

Solution. All solutions are of the form (a? — 1,a,1) with a even. We
have 2" = y"*! — 1 = (y — )m with m = y" + "1 + ...+ y + 1. Thus
m|z™ and ged(m,n + 1) = 1. Rewrite m as

m=y—-DE" " +2y" 2 +3y" P+ + (n—Ly+n)+ (n+1).
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Thus we have ged(m, y—1)|n+1. But ged(m,n+1) = 1, s0 ged(m,y—1) = 1.
Since 2™ = (y — 1)m, m must be a perfect n-th power. But

n n
(y+1)”:y"+(l>y”1+-~-+<n_1>y+l>m>y",

for n > 1. So m can be a perfect n-th power only if n = 1 and = = y% — 1.
Since  and n + 1 = 2 are relatively prime, y must be even, yielding the
presented solutions.

Problem 1.3.17. Find all triples (m,n,l) of positive integers such that

m+n = ged(m,n)?, m+1=gedm,1)?, n+1=ged(n,l)>

(1997 Russian Mathematical Olympiad)

Solution. The only solution is I = m = n = 2. Let d = ged(l,m,n),
and put | = dly, m = dmy, n = dny. Then d(m; + ny) = d?d?

mn?

where

dymn = ged(my,ny), so my +ny = dd?,,,. Defining d;,, and d;,,, likewise, we

get
2(l +ma +m) = d(diy, + diy, + dry).
d
Since ————— divides I; +m; + n1 as well as m1 + ny, it divides [y and
ged(d, 2)
likewise m1 and np. As these three numbers are relatively prime, we have
d

————=1andsod<2.
ged(d, 2) ana so &=

Note that dy,, din, dmyn are pairwise relatively prime; therefore we can

write 1 = ladpmdin, m1 = Madimdmn, N1 = Na2dindmy,. Then we have
dlmdmnm2 + dlndmnNQ = ddgnn

and so madyy, + nody, = ddp, and so forth. Assuming without loss of

generality that d,,, is no larger than dj,,, d;,,, we get
2dmn > ddmn = dlme + dlan > dlm + dln > 2dmn

Thus we have equality throughout: d = 2, my = ny = 1 and dj,,, = djp, =
dmn- But these three numbers are pairwise relatively prime, so they are all
1. Then m; = nq = 1 and from l; + m; = ddl2m, l1 = 1 as well. Therefore

l=m=n=2.
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12.4 Odd and even

Problem 1.4.5. We are given three integers a,b, c such that a,b,c, a +
b—c,a+c—b, b+c—a and a+ b+ c are seven distinct primes. Let d be the
difference between the largest and smallest of these seven primes. Suppose
that 800 € {a + b,b+ ¢,c + a}. Determine the mazimum possible value of
d.

Solution. Answer: 1594.

First, observe that a, b, c must all be odd primes; this follows from the
assumption that the seven quantities listed are distinct primes and the fact
that there is only one even prime, 2. Therefore, the smallest of the seven
primes is at least 3. Next, assume without loss of generality that a+b = 800.
Because a+b—c > 0, we must have ¢ < 800. We also know that c¢ is prime;
therefore, since 799 = 17 - 47, we have ¢ < 797. It follows that the largest
prime, a+b+c, is no more than 1597. Combining these two bounds, we can
bound d by d < 1597 — 3 = 1594. It remains to observe that we can choose
a =13, b="T87, c = 797 to achieve this bound. The other four primes are
then 3, 23, 1571 and 1597.

Problem 1.4.6. Determine the number of functions f:{1,2,...,n} —
{1995,1996} which satisfy the condition that f(1)+ f(2) +---+ f(1996) is
odd.

(1996 Greek Mathematical Olympiad)

Solution. We can send 1,2,...,n — 1 anywhere, and the value of f(n)
will then be uniquely determined. Hence there are 2"~! such functions.

Problem 1.4.7. Is it possible to place 1995 different natural numbers
along a circle so that for any two these numbers, the ratio of the greatest

to the least is a prime?
(1995 Russian Mathematical Olympiad)

Solution. No, this is impossible. Let ag, ..., a1995 = ag be the integers.
Then for ¢ = 1,...,1995, ar—_1/ay is either a prime or the reciprocal of a
prime; suppose the former occurs m times and the latter 1995 — m times.
The product of all of these ratios is ap/a1995 = 1, but this means that the
product of some m primes equals the product of some 1995—m primes. This
can only occurs when the primes are the same (by unique factorization),
and in particular there have to be the same number on both sides. But

m = 1995 — m is impossible since 1995 is odd, contradiction.
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Problem 1.4.8. Let a, b, ¢, d be odd integers such that 0 < a <b < c<d
and ad = bc. Prove that if a +d = 2% and b+ ¢ = 2™ for some integers k
and m, then a = 1.

(25th IMO)

Solution. Since ad = bc, we have
a((la+d)—(b+c¢))=(a—b)(a—c)>0.

Thus a +d > b+ ¢, 28 > 2™ and k > m. Since ad = a(2¥ — a) = bc =
b(2™ — b) we obtain

2mh —2%a =b% —a% = (b—a)(b+a).

By the equality 2™ (b — 2¥"™a) = (b — a)(b + a), we infer that 2 |(b —
a)(b+ a). But b — a and b + a differ by 2a, an odd multiple of 2, so either
b—a or b+ a is not divisible by 4. Hence, either 2™~1|b —a or 2™~ 1|b+ a.
But 0 <b—a <b<2m"! soit must be that 2~ |b + a.

Since 0 < b+a < b+c = 2™, it follows that b+a = 2™ Land b = 2™ 1 —q.
Then ¢ = 2™ ! and ad = bc = (2™ — a)(2™ ! + a).

From this equality we obtain a(a + d) = 22™~2 hence a = 1.

12.5 Modular arithmetics

Problem 1.5.7. Find all integers n > 1 such that any prime divisor of

n® —1 is a divisor of (n® —1)(n? —1).
(2002 Baltic Mathematics Competition)

Solution. We show that n = 2 is the only such integer. It is clear that

n = 2 satisfies the conditions. For n > 2, write
nS—1=mn>=1)"*+1)= 0> -1)(n+1)(n?—n+1);

hence, all prime factors of n? — n + 1 must divide n® — 1 or n?2 — 1 =
(n—1)(n+1). Note, however, that (n?—n+1,n°—1) < (n3+1,n-1) < 2;
on the other hand, n? —n+1=n(n—1)+1 is odd, so all prime factors of
n? —n+ 1 must divide n + 1. But n? —n+1 = (n+ 1)(n — 2) + 3, so we
must have n? —n + 1 = 3% for some k. Because n > 2, we have k > 2. Now
3|(n? —n + 1) gives n = 2 (mod 3); but for each of the cases n = 2,5,8

(mod 9), we have n? —n + 1 =3 (mod 9), a contradiction.
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Problem 1.5.8. Let f(n) be the number of permutations ai,...,a, of
the integers 1,...,n such that

(i) a1 = 1;

(ZZ) \ai —ai+1‘ § 2, 1= ].7...,TL—]..

Determine whether f(1996) is divisible by 3.

(1996 Canadian Mathematical Olympiad)

Solution. Let g(n) be the number of permutations of the desired form
with a,, = n. Then either a,_1 = n —1 or a,—1 = n — 2; in the latter
case we must have a,—2 =n — 1 and a,—3 = n — 3. Hence g(n) = g(n —
1) 4+ g(n — 3) for n > 4. In particular, the values of g(n) modulo 3 are
g(1)=1,1,1,2,0,1,0,0,... repeating with period 8.

Now let h(n) = f(n)—g(n); h(n) counts permutations of the desired form
where n occurs in the middle, sandwiched between n—1 and n—2. Removing
n leaves an acceptable permutation, and any acceptable permutation on
n — 1 symbols can be so produced except those ending in n—4, n—2, n—3,
n— 1. Hence h(n) =h(n—1)+g(n—1) —gn—4) = h(n —1) + g(n — 2);
one checks that h(n) modulo 3 repeats with period 24.

Since 1996 = 4 (mod 24), we have f(1996) = f(4) = 4 (mod 3), so
£(1996) is not divisible by 3.

Problem 1.5.9. For natural numbers m,n, show that 2™ — 1 is divisible
by (2™ — 1)% if and only if n is divisible by m(2™ — 1).

(1997 Russian Mathematical Olympiad)
Solution. Since
okntd _1=2¢_1 (mod 2" — 1),

we have 2™ — 1 divides 2™ — 1 if and only if m divides n. Thus in either

case, we must have n = km, in which case

2km _

1
ST =142+ ...+ 27*D =k (mod 2™ —1).

The two conditions are now that k is divisible by 2" — 1 and that m is
divisible by m(2™ — 1), which are equivalent.
Problem 1.5.10. Suppose that n is a positive integer and let

di < do <dz <dy
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be the four smallest positive integer divisors of n. Find all integers n such
that
n=di+di+di+d3.

(1999 Iranian Mathematical Olympiad)

Solution. The answer is n = 130. Note that 22 = 0 (mod 4) when z is
even and that 22 = 1 (mod 4) when z is odd.

If n is odd, then all the d; are odd and n = d3+d3+d3+d3 = 1+1+1+1=
0 (mod 4), a contradiction. Thus, 2|n.

If4nthendy =1l and dy =2, andn=1+0+d3 +d? #Z0 (mod 4), a
contradiction. Thus, 4 t n.

Therefore {dy, da, ds,ds} = {1,2,p,q} or {1,2,p, 2p} for some odd primes
p,q. In the first case, n = 3 (mod 4), a contradiction. Thus n = 5(1 + p?)
and 5|n, so p=ds =5 and n = 130.

Problem 1.5.11. Let p be an odd prime. For each i = 1,2,....,p—1

denote by r; the remainder when iP is divided by p*. Evaluate the sum

rntret-o+rpo1.

(Kvant)

Solution. Denote the sum in question by S. Combine the first summand
with the last, the second one with the next-to-last, and so on, to get

28 = (7"1 +Tp_1)+(T2—|—’I"p_2)+"'+(’l“p_1 +T1). (1)

We have 7; + 7,—; = i + (p — i)? (mod p?) by the definition of the
numbers 7,72, ...,rp,—1. Furthermore, because p is odd,

;P oo —o.p_ (P, p-1., (P\ p22_ . D p—1
-1 =p <1pz+2pz o

Since p is a prime, each binomial coefficient above is divisible by p, which
yields the conclusion that 7; + r,_; is divisible by p?. But 0 < r; < p?,
0 < 7p—i < p%, because p is a prime (so neither one equals 0), and now we
may claim that

ri—i—rp,i:pgfori:1,27...,p—1. (2)
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The equalities (1) and (2) show that
p—1,_p -1

S:
5 P 2

Problem 1.5.12. Find the number of integers x with |xz| < 1997 such
that 1997 divides x* + (x + 1)2.

(1998 Indian Mathematical Olympiad)

Solution. There are 4 such integers. With congruences all taken modulo
1997, we have

P4 (z+1)2 =224+ 20+1 =42+ 42 +2=0,

i.e., (2 4+ 1)2 = —1. Since 1997 is a prime of the form 4k + 1, there are

exactly two distinct solutions to u?2 = —1. Each corresponds to a different
solution to (2 +1)? = —1.
Also, the two solutions to (22 + 1) = —1 are nonzero since 0 does not

satisfy the equation. Therefore, there are exactly two satisfactory integers
x from —1997 to —1 and two more from 1 to 1997, for a total of four integer

solutions, as claimed.

12.6 Chinese remainder theorem

Problem 1.6.3. Let P(x) be a polynomial with integer coefficients. Sup-
pose that the integers a1, aso,...,a, have the following property: For any
integer © there exists an i € {1,2,...,n} such that P(x) is divisible by a;.
Prove that there is an ig € {1,2,...,n} such that a;, divides P(x) for any

nteger x.
(St. Petersburg City Mathematical Olympiad)

Solution. Suppose that the claim is false. Then for each i = 1,2,...,n
there exists an integer x; such that P(x;) is not divisible by a;. Hence,
there is a prime power pf that divides a; and does not divide P(x;). Some
of the powers p’fﬂpéﬂ ...,pF» may have the same base. If so, ignore all
but the one with the least exponent. To simplify notation, assume that
the sequence obtained this way is pi*,pk2, ... pFm m < n (p1,p2,...,pm
are distinct primes). Note that each a; is divisible by some term of this

sequence.
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Since p'fl , péﬂ ..., plm are pairwise relatively prime, the Chinese Remain-

der Theorem yields a solution of the simultaneous congruences
r=x; (modpM), ==z, (modph?),....2=1x, (modpFr).

Now, since P(z) is a polynomial with integer coefficients, the congruence
z = z; (mod p?'j) implies P(z) = P(z;) (mod p?'j) for each index j =
1,2,...,m. By the definition of p?", the number P(z;) is never divisible
by p?j, j = 1,2,...,m. Thus, for the solution = given by the Chinese
Remainder Theorem, P(z) is not divisible by any of the powers p?j. And

because each a; is divisible by some p?", j=1,2,...,m, it follows that no
a; divides P(x) either, a contradiction.

Problem 1.6.4. For any positive integer set {a1,as,...,an} there exists
a positive integer b such that the set {bai,baa, ..., ban} consists of perfect
powers.

Solution. There is a finite number of primes pi, ps, ..., pr that partici-
pate in the prime factorization of a1, as, ..., a,. Let

a; =pyipy? . opptt for i =1,2,...,n;
some of the exponents a;; may be zeros. A positive integer with prime
factorization py’p5?...pp" is a perfect g-th power if and only if all the
exponents u; are divisible by ¢. Thus it suffices to find positive integers

q1,q2, - - - , qn greater than 1, and nonnegative integers Iy, lo, . . ., [, such that
l1 4+ a11,ls + aq2, ..., I + aq are divisible by ¢,

l1 4+ @91, la + oo, ..., I + aop are divisible by qo,

l1 + ap1,lo + ans, - . ., Ik + ang are divisible by g,.

Now it is clear that we have lots of choices; let, for example, g; be the
i-th prime number. As far as [; is concerned, the above conditions translate
into

ll = —0j1 (mOd Qj), j = 1,27 s, n.

This system of simultaneous congruences has a solution by the Chinese
Remainder Theorem, because q1,qs, ..., g, are pairwise relatively prime.

Analogously, each of the systems of congruences

lo=—aj2 (modg;), 7j=12,...,n
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ls3=—a;3 (modg;), j=12,...,n

lp=—-ajr (modyg;), 7=12,...,n

is solvable by the same reason. Take lq,lo,...,[l; such that all these con-
gruences are satisfied. Multiplying each a; by b = plllpé2 .. .pﬁc’“ yields a
set {bay,bag, ..., ba,} consisting of perfect powers (more exactly, ba; is a
perfect g;-th power).

Remarks. 1) The following problem is a direct consequence of the above
result:

Prove that for every positive integer n there exists a set of n positive
integers such that the sum of the elements of each of its nonempty subsets
18 a perfect power.

(Korean proposal for the 3374 IMO)

Indeed, let {z1,z2,...,2m} be a finite set of positive integers and
S1,89,...,5, the element sums of its nonempty subsets (r = 2™ — 1).
Choose a b so that bS1,bS5,,...,bS, are all perfect powers. Then the set
{bx1,bxa, ..., b2y} yields the desired example.

2) Another consequence is the following: There are arithmetic progres-
sions of arbitrary finite length consisting only of powers. Yet, no such infi-
nite progression exists.

12.7 Numerical systems

Problem 1.7.12. The natural number A has the following property: the
sum of the integers from 1 to A, inclusive, has decimal expansion equal to
that of A followed by three digits. Find A.

(1999 Russian Mathematical Olympiad)

Solution. We know that

k=(1+2+---+A) — 10004

= w —1000A=A (% — 1000)

is between 0 and 999, inclusive. If A < 1999 then k is negative. If A > 2000

then % — 1000 > % and k£ > 1000. Therefore A = 1999, and indeed

14+2+---+1999 = 1999000.
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Problem 1.7.13. A positive integer is said to be balanced if the number
of its decimal digits equals the number of its distinct prime factors. For
instance, 15 is balanced, while 49 is not. Prove that there are only finitely

many balanced numbers.
(1999 Italian Mathematical Olympiad)

Solution. Let p; = 2, po = 3,... be the sequence of primes. If z is

balanced and it has n numbers, then
10" >pip2...pn>2-3-5...2n—-1)>2-2-4...2n—-2) > (n— 1)),

which implies that n is bounded and so is x, since z < 10™.
Problem 1.7.14. Let p > 5 be a prime and choose k € {0,...,p —
1}. Find the mazimum length of an arithmetic progression, none of whose

elements contain the digit k when written in base p.
(1997 Romanian Mathematical Olympiad)

Solution. We show that the maximum length is p — 1 if £ # 0 and p
is k = 0. In a p-term arithmetic progression, the lowest nonconstant digit
takes all values from 0 to p — 1. This proves the upper bound for k& # 0,
which is also a lower bound because of the sequence 1,...,p — 1. However,
for k£ = 0, it is possible that when 0 occurs, it is not actually a digit in the
expansion but rather a leading zero. This can only occur for the first term
in the progression, so extending the progression to p+ 1 terms would cause
an honest zero to appear. Thus the upper bound for £ = 0 is p, and the
sequence 1,p+1,...,(p— 1)p + 1 shows that it is also a lower bound.

Problem 1.7.15. How many 10-digit numbers divisible by 66667 are
there whose decimal representation contains only the digits 3, 4, 5, and 67

(1999 St. Petersburg City Mathematical Olympiad)

Solution. Suppose that 66667n had 10 digits, all of which were 3, 4, 5,
and 6. Then

3333333333 < 66667n < 6666666666 = 50000 < n < 99999.
Now consider the following cases:
(i) n =0 (mod 3). Then

2 1
66667n = 3 10° + 3
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the five digits of 3 - g followed by the five digits of g These digits are all

3, 4,5, or 6 if and only if — = 33333 and 1 = 99999.
(ii) n =1 (mod 3). Then

2 1
66667n = §(n —1)-10° + g(n +2) + 66666,

2 1
the five digits of g(n — 1) followed by the five digits of g(n + 2) + 66666.

1
Because —(n + 2) + 66666 must be between 66667 and 99999, its digits
cannot be 3, 4, 5, or 6. Hence there are no satisfactory n =1 (mod 3).

(iii) n =2 (mod 3). Let a = %(n —2). Then

2 1
66667n = <§(n —2)+ 1) 110 + 5 (n—2) + 33334,

the five digits of z = 2a+1 followed by the five digits of y = a+33334. The
units digits in  and y are between 3 and 6 if and only if the units digit in
a is 1 or 2. In this case the other digits in = and y are all between 3 and
6 if and only if the other digits in a are 2 or 3. Thus there are thirty-two
satisfactory a - we can choose each of its five digits from two options - and
each a corresponds to a satisfactory n = 3a + 2.

Therefore there is exactly one satisfactory n = 0 (mod 3), and thirty-two
satisfactory n = 2 (mod 3) - making a total of thirty-three values of n and
thirty-three ten-digit numbers.

Problem 1.7.16. Call positive integers similar if they are written using
the same set of digits. For example, for the set 1, 1, 2, the similar numbers
are 112, 121 and 211. Prove that there exist 8 similar 1995-digit numbers

containing no zeros, such that the sum of two them equals the third.
(1995 Russian Mathematical Olympiad)

Solution. Noting that 1995 is a multiple of 3, we might first trying to find
3 similar 3-digit numbers such that the sum of two of them equals the third.
There are various digits arrangements to try, one of which is abc+ach = cba.
The middle column must have a carry or else we would have ¢ = 0 and no
integer can begin with a 0. If there is a carry, we must have ¢ = 9, which
implies @ = 4 by looking at the first column. From the third column, we
find b = 5 and discover that indeed 459 4+ 495 = 954. Now to solve the
original problem, simply write 459 ...459+495...495 = 954 ...954, where
each three-digit number is repeated 1995/3 times.
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Problem 1.7.17. Let k and n be positive integers such that
(n+2)""2 (n+4)" (n+6)"TC, ... (n+ 2k)" T2k
end in the same digit in decimal representation. At most how large is k?
(1995 Hungarian Mathematical Olympiad)

Solution. We cannot have k& > 5, since then one of the terms would be
divisible by 5 and so would end in a different digit than those not divisible
by 5. Hence k < 4. In fact, we will see that k = 3 is best possible.

Since 2% = z (mod 10) for all z, ® (mod 10) only depends on x
(mod 20). Hence it suffices to tabulate the last digit of 2* for x = 0,...,19

and look for the longest run. For the evens, we get
0,4,6,6,6,0,6,6,6,4
while for the odds we get
1,7,5,3,9,1,3,5,7,9.

Clearly a run of 3 is best possible.
Problem 1.7.18. Let

1996
H(l—i—nx?’ )=1—|—a1xk1 +asz® 4+ - 4 apah,
n=1
where ai,as, ..., ay, are nonzero and k1 < ko < -+ < ky,, Find a1996.

(1996 Turkish Mathematical Olympiad)

Solution. Note that k; is the number obtained by writing ¢ in base 2 and
reading the result as a number in base 3, and a; is the sum of the exponents
of the powers of 3 used. In particular, 1996 = 219 +29 28 4274 26423 1. 22
S0

a1996 = 104+9+8+T74+6+ 3+ 2 =45.

Problem 1.7.19. For any positive integer k, let f(k) be the number of
element in the set {k + 1,k +2,...,2k} whose base 2 representation has
precisely three 1s.

a) Prove that, for each positive integer m, there exists at least one positive
integer k, such that f(k) =m.

b) Determine all positive integers m for which there exists exactly one k
with f(k) = m.



12.7. NUMERICAL SYSTEMS 257

(35t IMO)

Solution. a) Let g : N — N be the function defined as follows: g(k) is
the number of elements in the set {1,2,..., k} having three digits 1 in their
binary representation. The following equalities are obvious:

f(k) = g(2k) — g(k)

and
f(k+1) = f(k) = g2k +2) — g(2k) — (g(k + 1) — g(k)).

The binary representation of 2k + 2 is obtained by adding a final 0 in
the binary representation of k + 1. Thus, we have the following result:

1 if binary representation of 2k 4 1
flk+1)— f(k)= contains three digits 1 (1)
0 otherwise

It proves that the function f increases with at most a unit from k to
k+1

Since g(2") = (;‘) and f(2") = (”; 1) - (g) - (;‘) it follows that

f is unbounded function. If combine with the above property and observe
that f(4) = 1 one obtains that the range of f is the set of all positive
integers.
b) Let suppose that the equation f(k) = m has a unique solution. It
follows that
Flk+1) = Fk) = F(k) — f(k+1) = 1.

By (1), it follows that binary representations of 2k + 1 and 2k — 1 contain
three digits 1. Then the binary representation of k contains two digits 1.
From 2k — 1 = 2(k — 1) + 1 one obtains that the binary representation of
k — 1 also contains two digits 1. Hence, the last digit of £ — 1 is 1 and the
last but one digit is 0. Thus, k —1 = 2"+ 1 and k = 2" + 2, where n > 2.

For such a number we have:

F2"42) = 927 44) — g(2" +2) = 1+ g(2")) —g(2") = 1+ (’;)

Thus, we have proved that the equation f(k) = m has unique solution if
and only if m is a number of the form m =1+ g ,n> 2.

Problem 1.7.20. For each positive integer n, let S(n) be the sum of

digits in the decimal representation of n. Any positive integer obtained by
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removing several (at least one) digits from the right-hand end of the decimal
representation of n is called a stump of n. Let T'(n) be the sum of all stumps
of n. Prove that n = S(n) + 9T (n).

(2001 Asian Pacific Mathematical Olympiad)

Solution. Let d; be the digit associated with 10? in the base 10 repre-
sentation of n, so that n = d;,dym—1 .. .dp for some integer m > 0 (where
m

dm # 0). The stumps of n are Zdjloj_k for k =1,2,...,m, and their

. i=k
sum is
n) = iidjloj*k Zd le k
k=1 j=k j=1 k=1
m Jj—1 m
=> d; Y 10F = Zdj 1071
j=1 k=0 =1 10-1"
Hence,
9T (n) = f: (107 — 1) Zlojd - Zd
j=1
:ilojd —Zd =n—5S(n),
§=0
as desired.

Problem 1.7.21. Let p be a prime number and m be a positive integer.
Show that there exists a positive integer n such that there exist m consec-

utive zeroes in the decimal representation of p™.
(2001 Japanese Mathematical Olympiad)

Solution. It is well-known that if gcd(s,t) = 1, then s* =1 (mod t) for
some k: indeed, of all the positive powers of s, some two s¥* < s¥2 must be
congruent modulo ¢, and then s*27%1 =1 (mod t).

First suppose that p # 2, 5. Then ged(p, 10m+1) = 1, so there exists such
k that p* = 1 (mod 10m*!). Then p* = a - 10™*+! + 1, so there are m
consecutive zeroes in the decimal representation of p*.

Now suppose that p = 2. We claim that for any a, some power of 2 has
the following final a digits: a— [log 2%] zeroes, followed by the [log 2?7 digits
of 2%. Because ged(2,5%) = 1, there exists k such that 2¥ = 1 (mod 5%).
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Let b =k + a. Then 2° = 2% (mod 5%), and 2° = 0 = 2% (mod 2%). Hence,
2> = 29 (mod 10%). Because 2 < 10%, it follows that 2° has the required
property.

Now, simply choose a such that a — [log2?] > m (for instance, we could
m+ 1

ﬁ-‘ ). Then 2° contains at least m consecutive zeroes,

choose a = {

as desired.

Finally, the case p = 5 is done analogously to the case p = 2.

Remark. Actually, the property holds for every integer p > 2. If p is
a power of 2, it is trivial. Otherwise, one can prove using Kronecker'’s
theorem (stating that for oo € R\ Q the set of {n,} with n € N is dense
in [0,1]) that the numbers p™ can start with any combination of digits we
may need, in particular with 100...0.

—

mtimes
Problem 1.7.22. Knowing 2%° is an 9-digit number whose digits are

distinct, without computing the actual number determine which of the ten
digits is missing. Justify your answer.

Solution. It is not difficult to see that, when divided by 9, the remainder
is 5. The ten-digit number containing all digits: 0, 1, 2, 3,4, 5,6, 7,8, 9 is
a multiple of 9, because the sum of its digits has this property. So, in our
nine-digit number, 4 is missing.

Problem 1.7.23. It is well known that the divisibility tests for division
by 3 and 9 do not depend on the order of the decimal digits. Prove that 3
and 9 are the only positive integers with this property. More exactly, if an
integer d > 1 has the property that d|n implies d|ny, where ny is obtained
from n through an arbitrary permutation of its digits, then d =3 ord =9.

Solution. Let d be a k-digit number. Then among the (k + 2)-digit
numbers starting with 10 there is at least one that is divisible by d. Denote
it by 10a,as . . . ar. The assumption implies that both numbers aias . . . ;10
and aias . ..a;01 are divisible by d, and then so is their difference. This
difference equals 9 and the proof is finished, since d may only be some
divisor of 9.

Remark. The following problem given in an old Russian Mathematical

Olympiad is much more restrictive and difficult:

1 Leopold Kronecker (1823-1891), German mathematician with important contribu-
tions in the theory of equations. He made major contributions in elliptic functions and

the theory of algebraic numbers.
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Suppose that d > 1 has the property that d|n implies d|lny where ny is
obtained from n by reversing the order of its digits. Then d|99. Try to solve
this problem.



13

Powers of Integers

13.1 Perfect squares

Problem 2.1.14. Let x,y, z be positive integers such that

x oy oz
Let h be the greatest common divisor of xz,y,z. Prove that hxyz and

h(y — x) are perfect squares.
(1998 United Kingdom Mathematical Olympiad)

Solution. Let x = ha, y = hb, z = hc. Then a, b, ¢ are positive integers
such that ged(a,b,c) = 1. Let ged(a,b) = g. So a = ga’, b = gb’ and o’ and
b’ are positive integers such that

ged(a' b)) = ged(a’ — V', V) = ged(a’,a’ —b') = 1.

We have
1 1 _ 1 - / Y
. b—cﬁ)c(b a)=ab & c¢(b'—d)=dlyg.
So g|e and ged(a,b,c) = g = 1. Therefore ged(a,b) = 1 and ged(b —

a,ab) =1. Thus b —a =1 and ¢ = ab. Now

hxyz = h*abc = (h?ab)® and h(y —z) = h?
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are both perfect squares, as desired.
Problem 2.1.15. Let b an integer greater than 5. For each positive in-

teger n, consider the number
xp,=11...122...25,
— ==
n—1 n

written in base b. Prove that the following condition holds if and only if
b = 10: There exists a positive integer M such that for every integer n

greater than M, the number x,, is a perfect square.
(44" TMO Shortlist)

Solution. Assume that b > 6 has the required property. Consider the
sequence y, = (b — 1)x,. From the definition of z,, we easily find that

Yn = b®" + o™ 4 3b — 5.

Then ypynt1 = (b — 1)2xnxn+1 is a perfect square for all n > M. Also,

straightforward calculation implies

n-+2 n+1 2 n+2 n+1 2
(b2n+1+% _bs) < Yntpar < (b2n+1+ %4_()3) .

Hence for every n > M there is an integer a,, such that |a,| < b and

Yntnir = (B + 0" 436 — 5) (B2 £ b2 4 3 — 5)

b (b4 1 2
— (bQ”“ + 7(2 . +an> . (1)

Now considering this equation modulo b" we obtain (3b — 5)? = a2, so
that assuming that n > 3 we get a,, = £(3b — 5).

If a,, = 3b — 5, then substituting in (1) yields
1
Z192”(1)4 — 14b% + 45b% — 52b + 20) = 0,

with the unique positive integer solution b = 10. Also, if a,, = —3b+ 5, we

similarly obtain

1
Z(b4 — 14b% — 36 + 28b + 20) — 20" 1 (3b? — 2b—5) = 0

for each n, which is impossible.
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10" +5

2
For b = 10 it is easy to show that x,, = ( > for all n. This proves

the statement.
Second solution. In problems of this type, computing z,, = \/Z,, asymp-

totically usually works.
2n

From lim ——— =1 we infer that lim b— = +v/b — 1. Furthermore,

n—00 ( — 1)$n n—0o0 Z,
from

(bzp + 2ny1) (D20 — Zny1) = b?2p — Tpyy = 0" T2+ 302 —2b— 5

we obtain

-1
lim (bzp — zp41) = &

n—oo 2

Since the z,’s are integers for all n > M, we conclude that

bvb—1

bzn — Zn41 = 9

for all n sufficiently large. Hence b — 1 is a perfect square, and moreover b
divides 22,41 for all large n. It follows that b|10; hence the only possibility
is b = 10.

Problem 2.1.16. Do there exist three natural numbers greater than 1,

such that the square of each, minus one, is divisible by each of the others?
(1996 Russian Mathematical Olympiad)

Solution. Such integers do not exist. Suppose a > b > c satisfy the
desired condition. Since a? — 1 is divisible by b, the numbers a and b are
relatively prime. Hence the number ¢? — 1, which is divisible by a and b,
must be a multiple of ab, so in particular 2—1>ab.Buta>candb> c,
so ab > 02, a contradiction.

Problem 2.1.17. (a) Find the first positive integer whose square ends
in three 4’s.

(b) Find all positive integers whose squares end in three 4’s.

(c) Show that no perfect square ends with four 4’s.
(1995 United Kingdom Mathematical Olympiad)

Solution. It is easy to check that 382 = 1444 is the first positive integer
whose square ends in three 4’s. Now let n be any such positive integer.
Then n? — 382 = (n — 38)(n + 38) is divisible by 1000 = 23 - 53. Hence at
least one of n — 38, n + 38 is divisible by 4, and thus both are, since their
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difference is 76 = 4 - 19. Since 5 1 76, then 5 divides only one of the two
factors. Consequently n — 38 or n + 38 is a multiple of 4 - 53 = 500, so we
have n = 500k £ 38. It is easy to check that the square of all numbers of
this form (where k is a positive integer) end in three 4’s.

Note that c) follows from Problem ?7.

Problem 2.1.18. Let m,n be a natural numbers and m + i = a;b? for
1 =1,2,...,n, where a; and b; are natural numbers and a; is squarefree.

Find all values of n for which there exists m such that a1+as+- - -+a, = 12.
(1997 Bulgarian Mathematical Olympiad)

Solution. Clearly n < 12. That means at most three of the m + ¢ are
perfect squares, and for the others, a; > 2, so actually n < 7.

We claim a; # a; for i = j. Otherwise, we would have m + i = ab?
and m +j = ab3, s0 6 > n—1> (m+j) — (m+1) = a(b] — b7). This
leaves the possibilities (b;,b;,a) = (1,2,2) or (2,3,1), but both of those
force a1 + -+ a, > 12.

Thus the a’s are a subset of {1,2,3,5,6,7,10,11}. Thus n < 4, with

equality only if {a1,a2,a3,a4} = {1,2,3,6}. But in that case,
(6b1b2bsbs)? = (m + 1)(m 4 2)(m + 3)(m +4) = (m* + 5m +5)% — 1,

which is impossible. Hence n = 2 or n = 3. One checks that the only

solutions are then
(m,n) = (98,2),(3,3).

Problem 2.1.19. For each positive integer n, denote by s(n) the greatest

2 can be expressed as a

integer such that for all positive integer k < s(n), n
sum of squares of k positive integers.

(a) Prove that s(n) < n? — 14 for all n > 4.

(b) Find a number n such that s(n) = n? — 14.

(¢) Prove that there exist infinitely many positive integers n such that

s(n) =n? — 14.

(3374 IMO)

Solution. (a) Representing n? as a sum of n? — 13 squares is equivalent

to representing 13 as a sum of numbers of the form z? — 1, € N, such
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as 0,3,8,15,... But it is easy to check that this is impossible, and hence
s(n) < n? —14.
(b) Let us prove that s(13) = 132 — 14 = 155. Observe that

137 = 8% + 8% + 4% + 4 4 3
:82+82+42+42+22+22+12
=82+ 82442 +32 + 32+ 22 + 12+ 12 412

Given any representation of n? as a sum of m squares one of which is
even, we can construct a representation as a sum of m + 3 squares by
dividing the odd square into four equal squares. Thus the first equality
enables us to construct representations with 5,8,11,...,155 squares, the
second to construct ones with 7,10,13, ..., 154 squares, and the third with
9,12,...,153 squares. It remains only to represent 132 as a sum of k =
2,3,4,6 squares. This can be done as follows:

132 =122 +52 =122 442 + 32
=112 4+4%+42+ 42
=122 432422422 422 492

(c) We shall prove that whenever s(n) = n* — 14 for some n > 13, it also
holds that s(2n) = (2n)? — 14. This will imply that s(n) = n? — 14 for any
n=2"13.

If n2 = 22 + -+ + 22, then we have (2n)? = (221)% + -+ + (22,)2.
Replacing (2z;)? with z2 + 22 + 2? + 27 as long as it is possible we can
obtain representations of (2n)? consisting of r,7 + 3,...,4r squares. This
gives representations of (2n)? into k squares for any k < 4n? — 62. Further,
we observe that each number m > 14 can be written as a sum of k > m
numbers of the form 22 — 1, z € N, which is easy to verify. Therefore if
k < 4n? — 14, it follows that 4n? — k is a sum of k£ numbers of the form
22 —1 (since k > 4n? —k > 14), and consequently 4n? is a sum of k squares.

Remark. One can find exactly the value of s(n) for each n:

1, if n has a prime divisor congruent to 3 mod 4,
s(n) =< 2, if n is of the form 5 - 2, k a positive integer,

n? — 14, otherwise.

Problem 2.1.20. Let A be the set of positive integers representable in
the form a? + 2b for integers a,b with b # 0. Show that if p?> € A for a
prime p, then p € A.
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(1997 Romanian IMO Team Selection Test)

Solution. The case p = 2 is easy, so assume p > 2. Note that if p? =
a? + 2b2, then 2b> = (p — a)(p + a), In particular, a is odd, and since a
cannot be divisible by p, ged(p—a,p+a) = ged(p—a, 2p) = 2. By changing
the sign of a, we may assume p — a is not divisible by 4, and so

lp+al=m? |p—al=2n

Since |a| < |p|, both p + a and p — a are actually positive, so we have
2p = m? +2n?, so p = n? +2(m/2)2.

Problem 2.1.21. Is it possible to find 100 positive integers not exceeding
25000 such that all pairwise sums of them are different?

(4274 IMO Shortlist)

Solution. Yes. The desired result is an immediate consequence of the
following fact applied on p = 101.

Lemma. For any odd prime number p, there exist p nonnegative integers
less than 2p? with all pairwise sums mutually distinct.

Proof. We claim that the numbers a,, = 2np + (n?) have the desired
property, where (z) denotes the remainder of « upon division by p.

Suppose that ar + a; = a,, + a,. By the construction of a;, we have
2p(k+1) <ap+a; <2p(k+1+1).
Hence we must have k + [ = m + n, and therefore also
(k) + (12) = (m?) + (n?).
Thus
E+l=m+n and E*+12=m?+n? (mod p).
But then it holds that
(k=12 =206 +1%) = (k+1)* = (m—n)> (mod p),

s0 k—1 = +(m —mn), which leads to (k,l) = (m,n). This proves the lemma.
Problem 2.1.22. Do there exist 10 distinct integers, the sum of any 9

of which is a perfect square?

(1999 Russian Mathematical Olympiad)
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Solution. Yes, there do exist 10 such integers. Write S = a1 +as+-- -+
a10, and consider the linear system of equations

S—CL1=9-12

S—CL2=9-22

S —ai=9-10%
Adding all these gives
95 =9-(12+2% 4+ .- +10?)

so that
ar=S—-9k>=12+22+...+10% — 9k2.

Then all the ay’s are distinct integers, and any nine of them add up to
a perfect square.
Problem 2.1.23. Let n be a positive integer such that n is a divisor of

the sum
n—1
14> !
i=1
Prove that n is square-free.
(1995 Indian Mathematical Olympiad)

Solution. If n = mp? for some prime p, then

n—1 p—1mp—1
N I AT
i=1 7=0 k=0

p—1
=1+ (mp) Zj”_l =1 (mod p)
3=0

and the sum is not even a multiple of p. Hence if the sum is a multiple of n,
n must have no repeated prime divisors, or equivalently no square divisors
greater than 1.

Remark. The famous Giuga’s conjecture states that if n > 1 verifies
n—1

n|l + Z i"~!, then n is a prime.
i=1
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The reader can prove instead that for any such n we have: for any prime
divisor p of n, p — 1|E — 1 and p|E — 1.

Problem 2.1.24.pLet n,p be irﬁegers such that n > 1 and p is a prime.

If n|(p— 1) and p|(n® — 1), show that 4p — 3 is a perfect square.

(2002 Czech-Polish-Slovak Mathematical Competition)

Solution. From n|p — 1 it follows p — 1 > n and p > n. Because
3 _ 2
pln® —1=(n - 1)(n® +n +1)

we get p|n? +n + 1, i.e. pk = n? +n + 1 for some positive integer k.
On the other hand n|p — 1 implies p =1 (mod n) and pk = k (mod n).
We obtain n? +n 4+ 1=k (mod n), hence k = 1 (mod n).
It follows that p = an+ 1, k = bn+ 1 for some integers a > 0, b > 0. We
can write
(an+1)(bn+1)=n’*4+n+1,

s0
abn* + (a+bn+1=n’+n+1
ie.
abn+ (a+b) =n+1.

Ifb> 1, then abn+(a+b) >n+2>n+1.S0b=0,k=1,p =n?4n+1.
Therefore

dp—3=4dn’+4n+4-3=4dn’+4n+1=(2n+1)%

Problem 2.1.25. Show that for any positive integer n > 10000, there
ezrists a positive integer m that is a sum of two squares and such that
0<m-—n<3yYn.

(Russian Mathematical Olympiad)

Solution. We have a? < n < (a + 1)? for some integer a > 100. If we
write n = a2 4k, this means that k < 2a+1. We want m = a?+b? for some
integer b. The condition 0 < m —n < 3/n becomes k < b> < k+3v/a? + k.
We will show that

- VEk+1 if kis a perfect square
) [VE] if k is a perfect square

will work.
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Note that in both cases, k < b*> < (V& + 1)2. Thus we want
(VE+1)? <k+3va2+k

Wk+1<3vVa2+k
4k +4VEk +1 < 9Va2 + k.

Since k < 2a + 1, it is sufficient to prove
4(2a+1)+4v2a+14+1<9a

a>4v2a+1+5
a® —10a + 25 > 16(2a + 1)
a?—42a+9 > 0.

Because a? — 42a + 9 = a(a — 42) + 9, this last inequality is clearly true
for a > 100.
Problem 2.1.26. Show that a positive integer m is a perfect square if

and only if for each positive integer n, at least one of the differences
(m+1)%=m,(m+2)%-m,...,(m+n)?—m
is divisible by n.
(2002 Czech and Slovak Mathematical Olympiad)

Solution. First, assume that m is a perfect square. If m = a2, then
(m+e)—m=m+ec)?—a®>=m+c+a)(m+c—a).

Clearly, there exists some ¢, with 1 < ¢ < n, for which m + ¢ + a is
divisible by n. Thus, one of the given differences is divisible by n if m is a
perfect square.

Now, we assume that m is not a perfect square and show that there
exists n for which none of the given differences is divisible by n. Clearly,
there exist a prime p and positive integer k such that p?*~! is the highest

2k=1 with b and p being

power of p which divides m. We may let m = bp
relatively prime. Furthermore, pick n = p?*. For the sake of contradiction,
assume there exists a positive integer ¢ for which (m + ¢)? — m is divisible

by n. By expanding (m + ¢)? — m, we note that

p2k|(2bcp2k71 + 02 _ bp2k71)
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If p?* divides the quantity, then so does p?*~!. Thus, p?*~!|c? and so
p*|c. Let ¢ = rp*. Then, we have

p2k|(2b7"p3k_l 4 T2p2k _ bp2k—1)

However, this implies that p|b, which contradicts the original assumption
that b and p are relatively prime. Therefore, if m is not a perfect square, n
may be chose so that none of the given differences are divisible by n. This

completes the proof.

13.2 Perfect cubes

Problem 2.2.5. Find all the positive perfect cubes that are not divisible
by 10 so that the number obtained by erasing the last three digits is also a
perfect cube.

Solution. We have (10m + n)3 = 1000a® + b, where 1 < n < 9 and
b < 1000.

The equality gives

(10m + n)? — (10a)® = b < 1000,
SO
(10m +n — 10a)[(10m 4 n)? + (10m + n) - 10a + 100a?] < 1000.

As (10m+n)%+4(10m+n)-10a+100a? > 100, we obtain 10m+n—10a <
10, hence m = a.

If m > 2, then n(300m? + 30mn + n?) > 1000 false.

Then m = 1 and n(300 + 30n + n?) < 1000, hence n < 2. For n = 2, we
obtain 122 = 1728 and for n = 1 we get 11% = 1331.

Problem 2.2.6. Find all positive integers n less than 1999 such that n?

s equal to the cube of the sum of n’s digits.
(1999 Iberoamerican Mathematical Olympiad)

Solution. In order for n2 to be a cube, n must be a cube itself. Because
n < 1000 we must have n = 13,23, ..., or 93. Quick checks show that n = 1
and n = 27 work while n = 8,64, and 125 don’t. As for n > 62 = 216,
we have n? > 2162 > 272. However, the sum of n’s digits is at most
9+ 9+ 9 = 27, implying that no n > 6 has the desired property. Thus

n = 1,27 are the only answers.
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Problem 2.2.7. Prove that for any non-negative integer n the number
A=2"+3"+5"+6"

is not a perfect cube.
Solution. We will use modular arithmetic. A perfect cube has the form
Tk, 7k + 1, or 7k — 1, since

(Tx+1)P3=(Te +2)° = (Tz+4)>=1 (mod 7),
and
(Tx +3)3= (Te +5)° = (Tx +6)>= -1 (mod 7).

Now observe that

6°=(-1)°=1 (mod 7).

It follows that 2% = 36F = 5% = 65% = 1 (mod 7).

Denote a,, = 2™ 4+ 3™ + 5" + 6™ for n > 0. Set n = 6k + r, with r €
{0,1,2,3,4,5,6}. As 2" = 2" (mod 7), 3" = 3" (mod 7), 5" =5" (mod 7),
and 6" = 6" (mod 7) we have a,, = a, (mod 7).

It is easy to observe that ap = as = ag = 4 (mod 7), a1 = ag = 2
(mod 7) and az =5 (mod 7). Therefore, a,, is not a perfect cube.

The actual representations are given by (1) and

6n+1==6n+1°

6n+2="6(n—1)+2°
6n+3=6(n—4)+3°
6n+4==6(n+1)+(-2)*
6n+5="6(n+1)+(—1)>

Problem 2.2.8. Prove that any integer is a sum of five cubes.

Solution. For any integer n we have the identity
6n=(n+1)>3+ (1 —1)3+ (-n)®+ (—n)3. (1)

For an arbitrary integer m we choose the integer v such that v3 = m
(mod 6). It follows that m — v® = 6n for some integer n and we apply
identity (1).
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Problem 2.2.9. Show that any rational number can be written as a sum
of three cubes.

Solution. Let n be a rational number. We are looking for a relation of
the form

a®(x) + b3 (2) = A (z) + ax,

where a, b, ¢ are rational functions and o € Q.

2 2
Let ¢ = cos % + i sin ?ﬂ We have

a®(x) +b°(x) = (a(x) + b(x))(a(z) + eb(x))(a(z) + *b(x))

and consider
{ a(z) +eb(x) = (x —¢)?
a(z) +e%b(z) = (v — &2)3

Solving the above system in terms of a(z) and b(z) we derive the identity
1+3z—a3\> [ 322432\’ 5
S —_ —-1)°=9
(1+x+x2> +<x2+x+1 Te-1) .

and the desired conclusion follows dividing by 9.
Remark. There are rational numbers which are not sum of two cubes.
We suggest to the reader to find a such example.

13.3 k' powers of integers, k > 4

Problem 2.3.6. Let p be a prime number and a,n positive integers.
Prove that if

2P + 3P =a",
thenn = 1.
(1996 Irish Mathematical Olympiad)

Solution. If p = 2, we have 22 + 32 = 13 and n = 1. If p > 2, then p is
odd, so 5 divides 2P 4+ 3P and so 5 divides a. Now if n > 1, then 25 divides
a™ and 5 divides

2P + 3P
2+3

=op7l 2P 2.3 4. 1377 = 2Pl (mod 5),

a contradiction if p # 5. Finally, if p = 5, then 25+ 3% = 753 is not a perfect
power, so n = 1 again.
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Problem 2.3.7. Let x,y,p,n, k be natural numbers such that
" 4yt = ph.
Prove that if n > 1 is odd, and p is an odd prime, then n is a power of p.
(1996 Russian Mathematical Olympiad)

Solution. Let m = ged(z,y). Then x = mz1, y = my; and by virtue of
the given equation, m"™ (% +y7") = p¥, and so m = p® for some nonnegative
integer a. It follows that

ot +yf =pt (1)
Since n is odd,
x] +yr n—1 n—2 n—3, 2 n—2 n—1
it T I iR Y A oE VA ¢
Zit o 1 1 1 Y1 1 1 (2)

Let A denote the right side of the equation (2). By the condition p > 2,
it follows that at least one of x1,y; is greater than 1, so sincen > 1, A > 1.

From (1) it follows that A(z1 + 1) = p* "%, so, since 1 +y; > 1 and
A > 1, both of these numbers are divisible by p; moreover, z; + v, = p®
for some natural number §. Thus

A=ap =220 )+ = (0 — )"+ (0 — )"

=nz?"' 4 Bp.

Since A is divisible by p and x; is relatively prime to p, it follows that n
is divisible by p.

Let n = pq. Then zP? + P9 = p* or (2P)? 4 (y?)? = p*. If ¢ > 1, then
by the same argument, p divides q. If ¢ = 1, then n = p. Repeating this
argument, we deduce that n = p' for some natural number .

Problem 2.3.8. Prove that a product of three consecutive integers cannot
be a power of an integer.

Solution. Let n be an integer and assume by contradiction that

nn+1)(n+2) = z*

for some integers z and z, where z > 2. We note that n(n+2) = (n+1)2—1
and n+ 1 and (n + 1)2 — 1 are relatively prime. It follows

n+1=a?
(n+1)2-1=v
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for some integers a and b. It follows a?* — b* =1, i.e.
(@®=b)((a®)* "+ (a®) b4+ b = 1.

We get a? —b = 1, hence a® = b+ 1. The equation (b+ 1)* — b* = 1 has
unique solution z = 1, a contradiction.

Remark. A famous theorem of Erdos and Selfridge, answering a conjec-
ture of more than 150 years, states that the product of consecutive integers
is never a power.

Problem 2.3.9. Show that there exists an infinite set A of positive inte-

gers such that for any finite nonempty subset B C A, Z x is not a perfect

z€B
power.

(Kvant)

Solution. The set
A={2"3"T: n>1}

has the desired property. Indeed, if B = {2m3™+1 ... 2mnetl} ig a finite
subset of A, where nq < --- < nyg, then

Z T = 2n13n1+1(1 + 2n2—n13n2—n1 et 2nk—n13nk—n1) — 27L13'n.1—‘,-1]\[7
zEB
where gcd(N,2) = ged(N,3) = 1. Taking into account that n; and ny + 1

are relatively prime it follows that Z x is not a perfect power.

zeB
Problem 2.3.10. Prove that there is no infinite arithmetic progression

consisting only of powers > 2.
Solution. Assume that we have a such arithmetic progression, an + b,

n=1,2,... It is well known that

1
Zcm%—bzoo (1)

n>1

But on the other hand we have

1 1
Zcm—|—bg Z me < 10

n>1 m,s>2

relation contradicting (1).
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Floor Function and Fractional Part

14.1 General problems

Problem 3.1.10. Let n be a positive integer. Find with proof a closed

formula for the sum:

n+1 n+2 n+ 2k

(10" IMO)

Solution. We rewrite the equality as
AR R A ROV RS
— — J— — ce JE—— — cee=mn
2 2 22 2 2k+1 ° 9 ’
and use a special case of Hermite’s identity (n = 2):
1
x+§ =|2z] — |z].

This allows us to write the equality as

=31 (- ) [ g+

The sum telescopes and |n/28!| = 0 for large enough k’s.
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Problem 3.1.11. Compute the sum

> 15

0<i<j<n

where x is a real number.
Solution. Denote the sum in question by S,. Then

T L o R

T z 1 r n—1
ZL—J—F -+ =+ + |-+ )
n n o n n n
and, according to Hermite’s identity,
x
S, — S8, | = { _J = |z|.
1= |n-] = Lz

Because S1 = |z], it follows that S, = n|x] for all n.

Problem 3.1.12. Evaluate the difference between the numbers

20001 3k 4 2000 20001 3k — 2000
Z 3ET1 and Z T3kl |

k=0
Solution. We can write each term of the difference in question as

soed -ls)

where vy = 2000/3%*+1. Since —|u] = [—u] + 1 for each nonintegral value

of u, and since 3~ vk 1S never an integer, we have to examine the sum

;Q’”%Jﬂ’“‘a“)

1
Takingn =3 and x = v — 3 in (1) yields

{v+%J+{U—% 1= 30) - [v).

Hence the desired difference becomes

2000 712000 2000
Z 3k | | g3k+1

k=0
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and telescopes to

QOOOJ n {QOOOJ _ {2000

2000 — .. = 2000.
[2000] {3 3 32J+

Problem 3.1.13. a) Prove that there are infinitely many rational posi-
tive numbers x such that:

{2%} + {z} = 0,99.
b) Prove that there are no rational numbers x > 0 such that:

{22} + {2} = 1.

(2004 Romanian Mathematical Olympiad)

Solution. a) Since 0,99 = %, it is natural to look for a rational z

n
of the form 10’ for some positive integer n. It is not difficult to see that

T = 13 satisfies the given equality and then that x = 10k+ % also satisfies
the equality for any positive integer k.

b) Suppose that z = 27 with p, ¢ positive integers, gcd(p, q) = 1, verifies

1 2 2

{2?} 4+ {2z} = 1. We can see that pﬂ# =2? + 1 — 1€ Z, thus q|p?
and since ged(p,q) = 1, one has ¢ = 16.] Thus = € Z and this is obviously
impossible.

Problem 3.1.14. Show that the fractional part of the number v/4n% +n

s not greater than 0.25.
(2003 Romanian Mathematical Olympiad)

Solution. From inequalities 4n? < 4n? +n < 4n? +n + 1 one obtains
2n < V4An2 +n < 2n + 1. So, LMJ = 2n. We have to prove that
VaAnZ +n < 2n+ 0.25.

This is obvious, since by squaring the inequality one obtains:

4n2—|—n<4n2—|—n—|—i.
16
Problem 3.1.15. Prove that for every natural number n,

’I’L2

n?—1
> (Vi) < T

k=1
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(1999 Russian Mathematical Olympiad)

Solution. We prove the claim by induction on n. For n = 1, we have
0 < 0. Now supposing that the claim is true for n, we prove it is true for
n+ 1.

Each of the numbers vn2 +1,vn2 +2,...,v/n2 + 2n is between n and
n + 1. Thus

.2 .
{\/n2+z}—\/n2 z—n<\/n2+i+41—2—n:2i, 1=1,2,...,2n.
n n

Therefore we have

)? (n+1)?

Z{f}—z{f}+ 3 VR <™

k=n2+1

+—Zz+0

n?—1 +2n+1 _(n4+1)2-1
2 2 2 ’
completing the inductive step and the proof.

Problem 3.1.16. The rational numbers oy, ..., a, satisfy

;{kal} < g

for any positive integer k.
(a) Prove that at least one of aq,...,ay is an integer.
(b) Do there exist oy, ..., ay that satisfy

n

Z{k%} <

i=1

NS

such that no «; is an integer?
(2002 Belarus Mathematical Olympiad)

Solution. (a) Assume the contrary. The problem would not change if

we replace a; with {«;}. So we may assume 0 <qa;<lforalll <i<n.

Because o is rational, let a; = —, and D = H gi. Because (D—1)a;+a; =
q

=1
Day; is an integer, and «; is not an integer, {(D — 1)a;} + {a;}. Then

1> Z{(D— 1)0@}4—2{0@} = Zl =n
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contradiction. Therefore, one of the c; has to be an integer.
1 n
(b) Yes. Let o; = 5 for all 7. Then Z{kai} = 0 when k is even and

i=1
n

Y {kai} = g when & is odd.

i=1

14.2 Floor function and integer points

Problem 3.2.3. Prove that

for all integers n > 1.

Solution. Consider the function f : [1,n] — [1,77],

Using formula in Theorem 3.2.3 we obtain

> {Z—QJ - Z {%J = na(1) - n’a(1) = 0,

k=1 k=1

hence
2| — T4 | - 4
k=1 k 1 \/E

Problem 3.2.4. Let 6 be a positive irrational number. Then, for any

b
I

as desired.

positive integer m,

Stk 3 (5] = i

Solution. Consider the function f : [1,m] — [0, mf)], f(x) = Oz. Because
6 is irrational, we have n(Gy) = 0 and the conclusion follows from Theorem
3.2.5
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Problem 3.2.5. Let p and q be relatively prime positive integers and let

m be a real number such that 1 < m < p.

o= | ten

[m] s
vzl

Z — +Z — | = |m]s.

k=1 { p k=1L ¢

2) (Landaw) If p and q are odd, then

B3l e

qm

M

Solution. 1) Let f: [1,m] —  flz) = %x Because ged(p, q) =

1 and m < p, we have n(Gy) = 0 nd the desired equality follows from
Theorem 3.2.1.

2) In the previous identity we take m = g It follows that s = 4— and

the conclusion follows.

14.3  An useful result

Problem 3.3.3. Let p be an odd prime and let q be an integer that is
not divisible by p. Shows that

—1
S { kqu (p—1(g—1)
Y
k=1
Solution. For f : Z% — R, f(s) = (—1)%s®, conditions i) and ii) in
Theorem 3.3.1 are both satisfied. We obtain
p—1 1
> V—l)‘“kﬂJ = 2 (- 1)) - P

k=1 p

hence

p—1
q|  (—-1(qg—-1)
S |copet] - =ta=

k=1
Remarks. 1) By taking ¢ = 1 we get

p—1 2
e
k=1
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Using now the identity |—z| = 1— |z], € R, the last display takes the
form )
p— 2
1—
Z(_l)k V;—J = Tp
k=1 p

2) Similarly, applying Theorem 3.3.1 to f : Z% — R, f(s) = (—1)%s*
yields

= q| ap-D@*-p-1 p-1
S [yt | < dooopol) pod

k=1 p

Taking ¢ = 1 gives

k] 0= 2@ -DE+1)
N R

Problem 3.3.4. Let p be an odd prime. Show that

kP -k p+1

p 2

i

(mod p).

=~
Il

1

P
Solution. For f(s) = S—, conditions i) and ii) in Theorem 3.3.1 are also

satisfied and for ¢ = 1 we have

>[5

It follows

i.e.

The conclusion follows since

p—12 _ p*+1 p+1
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Remarks. 1) For each £ = 1,2,...,p — 1 denote by 74 the remainder
when kP is divided by p?. We have

D kP 2
kP = Z? pr4re, k=1,2,...,p—1,

p—1 p—1 kP p—1
ka:pQ { J+Zrk—— +Zrk+2k1’
k=1 1

k=

It follows )
prp—1)
2
2) The formula in our problem shows that the sum of the quotients

rntret-o+rpo1=

obtained when kP —k is divided by p (Fermat’s Little Theorem) is congruent

1
to 1% modulo p.
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Digits of Numbers

15.1 The last digits of a number

Problem 4.1.4. In how may zeroes can the number 1™ 4 2™ 4 3™ 4 4"
end for n € N?

(1998 St. Petersburg City Mathematical Olympiad)

Solution. There can be no zeroes (i.e., n = 4), one zero (n = 1) or two
zeroes (n = 2). In fact, for n > 3, 2" and 4™ are divisible by 8, while 1" 4 3™
is congruent to 2 or 4 mod 8. Thus the sum cannot end in 3 or more zeroes.

Problem 4.1.5. Find the last 5 digits of the number 598",

Solution. First, we prove that 5981 = 55 (mod 10°). We have

51981 _ 55 _ (51976 . 1)55 _ 55[(58)247 —1]
= M[5°(5° — 1)] = M[5°(5* — 1)(5* + 1)]
= M[5°(5—1)(5+1)(5* + 1)(5* + 1)]
= M522% = M100, 000.

Therefore 5198 = AM100, 000+ 5% = M100, 000+ 3125, so 03125 are the
last 5 digits of the number 598!,

Problem 4.1.6. Consider all pairs (a,b) of natural numbers such that
the product a®b®, written in base 10, ends with exactly 98 zeroes. Find the

pair (a,b) for which the product ab is smallest.
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(1998 Austrian-Polish Mathematics Competition)

Solution. Let ag be the maximum integer such that 2%2|a. Define as, ba,
and bs similarly. Our taks translates into the following: find a, b such that
min{asa + bsb, aza + bab} = 98 and ab is minimal. Since 5|asa + bsb, asa +
bsb > 98 and min{asa + bsb, aza + bab} = aza + bab = 98. Note that if
5|gcd(a, b), then asa + bab # 98, contradiction. Without loss of generality,
suppose that as > 1 and bs = 0. Let a = 2%25%2 and 2%2y. (gcd(2,2) =
gced(5,x) = ged(2,y) = 1.) Then asa = a5(2*25%z) > 98 and aga =
a2(2925% ) < 98. So as > az. We consider the following cases.

(a) a2 = 0. Then by(2%2y) = 98. So by = 1, y = 49, b = 98. Since
a5(5%x) > 98 and z is odd a = 5%z > 125 for a5 > 3; x > 3 and a > 75
for as = 2; x > 21 and a > 105 for a5 = 1. Hence for as = 0, b = 98,
a > T75.

(b) az > 1. Then a5 > 2. We have 2%25% 2 < 98 and 5% < 49. Thus
as = 2,2 =1, as = 1, a = 50. Then byb = 48. Let b = 2°2y. Then
ba(2°2y) = 48, which is impossible.

From the above, we have (a,b) = (75,98) or (98,75).

15.2 The sum of the digits of a number

Problem 4.2.7. Show that there exist infinitely many natural numbers
n such that S(3™) > S(3"*1).

(1997 Russian Mathematical Olympiad)

Solution. If S(3") < S(3"*!) for large n, we have (since powers of 3
are divisible by 9, as are their digit sums) S(3") < S(3"*!) — 9. Thus
S(3™) > 9(n — ¢) for some ¢, which is eventually a contradiction since for
large n, 3" < 10" ~°.

Problem 4.2.8. Do there exist three natural numbers a,b,c such that
S(a+b) <5, Sb+c) <5, S(c+a) <5, but S(a+b+c) > 507

(1998 Russian Mathematical Olympiad)

Solution. The answer is yes. It is easier to find a+b, b+ ¢, c+ a instead.
Since a+ b+ ¢ is an integer, their sum 2(a+ b+ ¢) must be even; since a, b, ¢
are positive, they must satisfy the triangle inequality. Finally, a4+ b4 ¢ must

have a digit sum of at least 51.
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This leads to the solution
a+ b =100001110000, b+ ¢ = 11110000000, ¢+ a = 100000001110.
These four numbers have digit sum 4, and
a+ b+ c = 105555555555
has digit sum 51. We get
a = 105555555555 — 11110000000 = 94445555555

b = 105555555555 — 100000001110 = 5555554445
¢ = 105555555555 — 100001110000 = 5554445555.

Problem 4.2.9. Prove that there exist distinct positive integers

{ni}t1<i<so0 such that

ni 4+ S(n1) =n2 + S(ng) = -+ =nso + S(nso).

(1999 Polish Mathematical Olympiad)

Solution. We show by induction on k that there exist positive integers
ni,...,ng with the desired property. For k = 1 the statement is obvious.
For k > 1, let my < --- < my_1 satisfy the induction hypothesis for k — 1.
Note that we can make all the m; arbitrarily large by adding some large
power of 10 to all of them, which preserves the described property. Then,
choose m with 1 < m < 9 and m = my + 1 (mod 9). Observing that
S(z) = = (mod 9), we have m; —m + S(my) — S(m) + 11 = 9] for some
integer I. By choosing the m; large enough we can ensure 10" > my,_;. Now
let n; = 10! +m; for i < k and ng = m + 10+ — 10. Tt is obvious that
n; + S(n;) = n; + S(n;) for i,j < k, and

ny +S(n1) = (10" 4 my) + (1 + S(m +1)) = (my + S(mq) + 1) +10'!

= (914+S(m)+m—10)+10""t = (m+10"+1 —10)+(91+S(m)) = np+S(nx),

as needed.
Problem 4.2.10. The sum of the decimal digits of the natural number
n s 100, and that of 44n is 800. What is the sum of the digits of 3n?
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(1999 Russian Mathematical Olympiad)

Solution. The sum of the digits of 3n is 300.

Suppose that d is a digit between 0 and 9, inclusive. If d < 2 then
S(44d) = 8d, and if d = 3 then S(8d) = 6 < 8d. If d > 4, then 44d < 44(9)
has at most 3 digits so that S(44d) < 27 < 8d.

Now write n = Z n; - 101'7 so that the n; are the digits of n in base 10.
Then

S 8ni = S(44n) < Y S(44n; - 107)
=) S(44n;) <> 8ni,

so equality must occur in the second inequality — that is, each of the n;
must equal 0, 1, or 2. Then each digit of 3n is simply three times the
corresponding digit of n, and S(3n) = 35(n) = 300, as claimed.

Alternative solution. Using properties 3, 5, we have
S(3n) <35(n) =300

and
800 = S(11-3n+ 11n) < S(11-3n) + S(11n)

< S(11)S(3n) + S(11)S(n) = 25(3n) + 200,

from where S(3n) > 300. Thus, S(3n) = 300.

Problem 4.2.11. Consider all numbers of the form 3n? +n + 1, where
n s a positive integer.

(a) How small can the sum of the digits (in base 10) of such a number
be?

(b) Can such a number have the sum of its digits (in base 10) equal to
1999°¢

(1999 United Kingdom Mathematical Olympiad)

Solution. (a) Let f(n) = 3n?+n+1. When n = 8, the sum of the digits
of f(8) = 201 is 3. Suppose that there was some m such that f(m) had a
smaller sum of digits. Then the last digit of f(m) must be either 0, 1, or
2. Because f(n) =1 (mod 2) for all n, f(m) must have units digit 1.

Because f(n) can never equal 1, this means we must have 3m? +m+1 =
10% 4+ 1 for some positive integer k, and m(3m + 1) = 10*. Because m

and 3m + 1 are relatively prime, and m < 3m + 1, we must either have
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(m,3m + 1) = (1,10%) — which is impossible — or (m,3m + 1) = (2%, 5%).
For k=1, 5% #£3.2% 4 1; for k > 1, we have

5P =5F"2.95 > 2F2 (124 1) >3- 2" + 1.

Therefore, f(m) can’t equal 10¥ + 1, and 3 is indeed the minimum value
for the sum of digits.
(b) Consider n = 10?22 — 1.

f(n) =3-10"*" —6-10%** 4+ 3 + 10%*2,
Thus, its decimal expansion is

29...950...03,
——— N———
221 221

and the sum of digits in f(10%22 — 1) is 19999.

Problem 4.2.12. Consider the set A of all positive integers n with the
following properties: the decimal expansion contains no 0, and the sum of
the (decimal) digits of n divides n.

(a) Prove that there exist infinitely many elements in A with the following
property: the digits that appear in the decimal expansion of A appear the
same number of times.

(b) Show that for each positive integer k, there exists an element in A

with exactly k digits.
(2001 Austrian-Polish Mathematics Competition)

Solution. (a) We can take ny = 11...1 and prove by induction that
—
3k times

3k+2|103° — 1. Alternatively, one can observe that
103" =1 = (10— 1)(102 + 10+ 1)(1023 + 105+ 1) ... (103" +10" " +1)

and that 9|10~! and 31023 4+ 103" + 1 for 0 <i < k — 1.

(b) We will need the following lemmas.

Lemma 1. For every d > 0 there exists a d-digit number that contains
only ones and twos in its decimal expansion and is a multiple of 2¢.

Proof. Exactly in the same way as in the proof of Theorem 1.7.1 one
can prove that any two d-digit numbers which have only ones and twos give
different residues mod 2¢. Since there are 2¢ such numbers, one of them is
a multiple of 2¢. O
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Lemma 2. For each k > 2 there exists d < k such that the following
inequality holds: k 4+ d < 24 < 9k — 8d.

Proof. For 3 < k < 5, d = 3 satisfies the inequalities. For 5 < k < 10,
d = 4 satisfies the inequalities. We will show that d = |log, 4k | satisfies for
all k > 10. If k > 3, then log, 4k < 2*, so d < k. Additionally, k+d < 2k <
24 If k > 10, then 16k> < 2%, so 4k < 2F/2 < 25K/8 4 < log, 4k < gn and
8k — 8d > 4k > 24. O

Now, return to the original problem. For k = 1, n = 1 has the desired
property. For k = 2, n = 12 has the desired property. Now, for each k > 2 we
have some number d satisfying the condition Lemma 2. Consider a k-digit
integer n such that the last d digits of n have the property described in the
first Lemma. We can choose each of the other digits of n to be any number
between zero and nine. We know that the sum of the last d digits of n is
between d and 2d, and we can choose the sum of the other k —d digits to be
any number between k —d and 9(k—d). Since k—d+2d < 2¢ < 9(k—d)+d,
we can choose the other digits such that the sum of the digits of n is 2¢.
This completes the proof because n is a multiple of 2.

Remark. A number divisible by the sum of its digits is called a Niven!
number. It has been proved recently that the number of Niven numbers

14
smaller than x is | — log 10 + o(1) P The courageous reader may try
27 log x

to prove that there are arbitrarily long sequences of consecutive numbers
which are not Niven numbers (which is easily implied by the above result;
yet there is an elementary proof of the last assertion). For more details
one can read the article ” Large and small gaps between consecutive Niven
numbers”, Journal of Integer Sequences, Vol.6(2003), by J.-M. Koninck and
N. Doyon.

15.3 Other problems involving digits

Problem 4.3.3. A wobbly number is a positive integer whose digits in
base 10 are alternately non-zero and zero, the units digit being non-zero.

Determine all positive integers which do not divide any wobbly number.

(35" IMO Shortlist)

! Ivan Niven (1915- ), Canadian mathematician with contributions in the ones of
Diophantine approximation, the study of irrationality and transcendence of numbers,

and combinatorics.
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Solution. If n is a multiple of 10, then the last digit of any multiple of n
is 0. Hence it is not wobbly. If n is a multiple of 25, then the last two digits
of any multiple of n are 25, 50, 75 or 00. Hence it is not wobbly. We now
prove that these are the only numbers not dividing any wobbly number.

We first consider odd numbers m not divisible by 5. Then ged(m, 10) = 1,
and we have ged((10F — 1)m, 10) = 1, for any k > 1. It follows that there
exists a positive integer ! such that 10’ = 1 (mod (10* —1)m), and we have
10* =1 (mod (10* — 1)m). Now

10F — 1 = (10 — 1)(10*=D 410702 4 ... 4 10% — 1).

Hence z, = 10°¢=1 4+ 1002 ... 4 10* 4 1 is a multiple of m for any
k > 1. In particular, zo is a wobbly multiple of m. If m is divisible by 5,
then 5zs is a wobbly multiple of m.

Next, we consider powers of 2. We prove by induction on ¢ that 22! has a
wobbly multiple w; with precisely ¢ non-zero digits. For ¢t = 1, take w; = 8.
Suppose w; exists for some ¢t > 1. Then w; = 22/T1d for some d. Let w; 1 =
10%t¢ + w; where ¢ € {1,2,3,...,9} is to be chosen later. Clearly, w1 is
wobbly, and has precisely ¢+ 1 non-zero digits. Since wy 1 +22¢(5%'c+2d), it
is divisible by 22t+3 if and only if 5%!c¢+2d = 0 (mod 8) or ¢ = 6d (mod 8).
We can always choose ¢ to be one of 8, 6, 4 and 2 in order to satisfy this
congruence. Thus the inductive argument is completed. It now follows that
every power of 2 has a wobbly multiple.

Finally, consider numbers of the form 2'm, where ¢t > 1 and ged(m, 10) =
1. Such a number has w;xo; as a wobbly multiple.

Problem 4.3.4. A positive integer is called monotonic if its digits in
base 10, read from left right, are in nondecreasing order. Prove that for
each n € N, there exists an n-digit monotonic number which is a perfect

square.
(2000 Belarussian Mathematical Olympiad)

Solution. Any 1-digit perfect square (namely, 1, 4, or 9) is monotonic,
proving the claim for n = 1. We now assume n > 1.

If n is odd, write n = 2k — 1 for an integer k£ > 2, and let

_ k _
z, = (10F +2)/6 =166...67.
k—2

Then
10% +4-10" +4  10% +@+1
36 36 9 9

;=
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Observe that

102 72 28
— 1022 (=
36 *

36 ' 36
7
:2-102’<—2+102’“—2-z:277...7+—.
9 2k—2 9

Thus, the right-hand side of (1) equals

1 1
277...74—Z + (11,1 4= | +=-=277...788...89,
2k—2 k k=2 k-1
an n-digit monotonic perfect square.

If n is even, write n = 2k for an integer k£ > 1, and let

10% 42
Yk = 3 —&/._.Zj&
k—1
Then o .
1 10 10 4
2 2k k
= (1 4.1 )= — 4. — 4 =
Yr 9(0 + 0% +4) 9 + 9 +9

9 9 N——
2k k k—1

an n-digit monotonic perfect square. This completes the proof.

1 4 4
= 11...1-1—5 +(44...44-])+-=11...155...56,
k
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Basic Principles in Number Theory

16.1 Two simple principles

Problem 5.1.7. Let ny < na < --- < nagoo < 10190 be positive inte-

gers. Prove that one can find two nonempty disjoint subsets A and B of

{n1,na,...,n2000} such that
|A| = |B| ,Zx: qu and va2: ZxQ.
T€EA zeB TxEA zeB
(2001 Polish Mathematical Olympiad)
Solution. Given any subset S C {ny,ng,...,na0} of size 1000, we have

0< Y x<1000-10",
TES

0< ZxQ < 1000 - 10209,
x€S

Thus, as S varies, there are fewer than (1000-101%9)(1000-102%%) = 10306

values of <Z x, Z 302) .

zeS xz€S
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2000
2000\ 2000 2000 . . .
Because Z ( > =2 and 1000 is the biggest term in the sum,

k
k:2800
2000y 2
Z  Th
(1000) Z 001 e e

> 10306

2000 22000 10600
(1ooo> ~ 2001 ~ 2001

distinct subsets of size 1000. By the Pigeonhole Principle, there exist

distinct subsets C' and D of size 1000, such that Z z? = Z z? and
zeC xzeD
Z T = Z z. Removing the common elements from C' and D yields sets

zeC xzeD
A and B with the required properties.

Problem 5.1.8. Find the greatest positive integer n for which there ex-
ist n nonnegative integers x1,xs,...,xn, not all zero, such that for any
sequence £1,€3, .. .,n of elements {—1,0,1}, not all zero, n® does not di-

vide €121 + €29 + -+ + EpTn.
(1996 Romanian Mathematical Olympiad)

Solution. The statement holds for n = 9 by choosing 1,2,22,...,28,
since in that case

ler 4+ -+ €928 <1424 +28 <93,

However, if n = 10, then 2'° > 103, so by the Pigeonhole Principle, there
are two subsets A and B of {z1, ..., z19} whose sums are congruent modulo
103. Let g; = 1 if z; occurs in A but not in B, —1 if z; occurs in B but not
in A, and 0 otherwise; then Z&ﬂii is divisible by n?.

Problem 5.1.9. Given a positive integer n, prove that there exists € > 0
such that for any n positive real numbers ay,as,...,a,, there exists t > 0
such that

1
e < {ta1}, {tas},...,{tan} < 7

(1998 St. Petersburg City Mathematical Olympiad)

Solution. More generally, we prove by induction on n that for any real
number 0 < r < 1, there exists 0 < £ < r such that for ay,...,a, any

positive real numbers, there exists t > 0 with

{tar},...,{ta,} € (e, 7).
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The case n = 1 needs no further comment.

Assume without loss of generality that a, is the largest of the a;. By
hypothesis, for any ' > 0 (which we will specify later) there exists &’ > 0
such that for any aq,...,a,—1 > 0, there exists ' > 0 such that

{t'ar},....{t'an_1} € (¢',1").

Let N be an integer also to be specified later, A standard argument
using the Pigeonhole Principle shows that one of t'a,,, 2t'a,, ..., Nt'a, has
fractional part in (—=1/N,1/N). Let st’'a,, be one such term, and take ¢ =
st' + ¢ for ¢ = (r — 1/N)/ay,. Then

ta, € (r—2/N,r).

So we choose N such that 0 < r—2/N, thus making {ta,} € (r—2/N,r).
Note that this choice of N makes ¢ > 0 and ¢ > 0, as well.

As for the other ta;, for each ¢ we have k; + ¢’ < t'a; < k; + ' for some
integer k;, so sk; + s’ < st’a; < sk; + s’ and

(r—1/N)

sk¢+€’<(st’+c)a¢<ski+s7“’—|—ai < sk;+ Nv' +r—1/N.

an
So we choose 7’ such that Nv' — 1/N < 0, thus making {ta;} € (¢/,7).
Therefore, letting & = min{r — 2/N,e’}, we have

0 <e<{tar},{tas},...,{tan} <r

for any choices of a;. This completes the inductive step, and the claim is
true for all natural numbers n.

Problem 5.1.10. We have 2™ prime numbers written on the blackboard
in a line. We know that there are less than n different prime numbers on
the blackboard. Prove that there is a compact subsequence of numbers in
that line whose product is a perfect square.

Solution. Suppose that p1,pa,...,pm (M < n) are primes which we
met in the sequence a1, as, ..., asn written on the blackboard. It is enough
to prove that there is a compact subsequence, where each prime occurs
even times. Denote ¢;; the exponent of the prime p; (1 < ¢ < m), in the
product of the first j numbers a; ...az...a; from our sequence. Let d;; be
the residue modulo 2 of ¢;;, then we can write ¢;; = 2t;; + d;;, d;; € {0,1}.
Every system (dij,daj, . .., dm;) is formed from m zeros and ones. Number

of possible such systems is 2™ which is less than 2". Hence by Pigeonhole
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Principle there exist two identical systems.
(dik,doky - -« dmi) = (du,dary - - dmt), 1<k<l<2"
We have d;;, = d;; for 1 <7 < m and from here
ci — cik = 2(ta — tix) + (da — dix) = 2(ty — tix)

and ¢;; — ¢ is divisible by 2 for 1 <1i < m.

Thus the exponent of the p; in the product agtiak42...a; = maz.. -4
is equal to ¢;; — ¢k, SO every number p; has an even exponent is tﬁéciazr.o.d.l?ckt
Qk+10k+2 - .. a. Hence agyiagya ... ap is the perfect square.

Problem 5.1.11. Let 21 = 23 = 3 = 1 and Tpi3 = Tpn + Tnt1Tni2
for all positive integers n. Prove that for any positive integer m there is an
integer k > 0 such that m divides xy.

Solution. Observe that setting x¢p = 0 the condition is satisfied for
n = 0.

We prove that there is integer k& < m? such that x;, divides m. Let r; be
the remainder of z; when divided by m for t = 0,1,...,m3 + 2. Consider
the triples (ro,71,72), (r1,72,73), -+, (Fm3, "m311, Tm31o). Since r; can take
m values, it follows by the Pigeonhole Principle that at least two triples
are equal. Let p be the smallest number such that triple (rp, 7pt1,7pt2) 1S
equal to another triple (14, 7441,7¢+2), p < ¢ < m3. We claim that p = 0.

Assume by way of contradiction that p > 1. Using the hypothesis we
have

Tp =rp_1 +7prpr1  (mod m) and rg10 =11 +1rgrgr1  (mod m).

Since rp = rq, Tp+1 = Tg+1 and rpio = Tqio, it follows that rp—1 =
Tg—1, 80 (Fp—1,Tp,Tpt1) = (Tg—1,Tq,Tq+1), Which is a contradiction with
the minimality of p. Hence p = 0, so vy = rg = 0, and therefore z, = 0
mod m.

16.2 Mathematical induction

Problem 5.2.7. Let p be an odd prime. The sequence (an)n>0 is defined
as follows: ag =0,a1 =1,..., ap—2 =p—2 and, for alln > p—1, ay, is the
least positive integer that does not form an arithmetic sequence of length
p with any of the preceding terms. Prove that, for all n, a, is the number

obtained by writing n in base p — 1 and reading the result in base p.
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(1995 USA Mathematical Olympiad)

Solution. Our proof uses the following result.

Lemma. Let B = {bg,b1,ba,...}, where b, is the number obtained by
writing n in base p — 1 and reading the result in base p. Then

(a) for every a & B, there exists d > 0 such that a — kd € B for k =
1,2,....,p—1; and

(b) B contains no p-term arithmetic progression.

Proof. Note that b € B if and only if the representation of b in base p
does not use the digit p — 1.

(a) Since a ¢ B, when a is written in base p at least one digit is p— 1. Let
d be the positive integer whose representation in base p is obtained from
that of a by replacing each p — 1 by 1 and each digit other than p — 1 by
0. Then none of the numbers a —d, a —2d,...,a— (p—1)d hasp—1 as a
digit when written in base p, and the result follows.

(b) Let a,a+d,a+2d,...,a+ (p—1)d be an arbitrary p-term arithmetic
progression of nonnegative integers. Let J be the rightmost nonzero digit
when d is written in base p, and let a be the corresponding digit in the
representation of a. Then o, + 6,...,a + (p — 1)d is a complete set of
residues modulo p. It follows that at least one of the numbers a, a+d, ..., a+
(p —1)d has p — 1 as a digit when written in base p. Hence at least one
term of the given arithmetic progression does not belong to B. O

Let (an)n>0 be the sequence defined in the problem. To prove that a, =
b, for all n > 0, we use mathematical induction. Clearly ag = by = 0.
Assume that ap = by for 0 < &k < n — 1, where n > 1. Then a,, is the
smallest integer greater than b,_1 such that {bg,b1,...,bn—_1,an} contains
no p-term arithmetic progression. By part (i) of the proposition, a, € B
S0 a, > by,. By part (ii) of the proposition, the choice of a,, = b,, does not
yield a p-term arithmetic progression with any of the preceding terms. It
follows by induction that a,, = b, for all n > 0.

Problem 5.2.8. Suppose that x,y and z are natural numbers such that
xy = 22+1. Prove that there exist integers a, b, ¢ and d such that x = a®>+b2,
y=c®+d? and z = ac+ bd.

(Euler’s problem)

Solution. We prove the claim by strong induction on z. For z = 1, we
have (z,y) = (1,2) or (2,1); in the former (resp. latter) case, we can set
(a7 ba &) d) = (17 0,1, 1) (resp. (0717171))
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Suppose that the claim is true whenever z < zp, and that we wish to
prove it for (z,y,2) = (o0, Yo, 20) Where zoyo = 22 + 1. Without loss of
generality, assume that 2o < yo. Consider the triple (x1,y1,21) = (zo,zo +
Yo — 220,20 — To), so that (zo, yo, 20) = (x1,21 +y1 + 221,21 + 21).

First, using the fact that xoyo = 23 + 1, it is easy to check that (x,y, z) =
(21,91, 21) satisfies zy = 2% + 1.

Second, we claim that x1,y1,21 > 0. This is obvious for x;. Next, note
that y1 = w0 + Yo — 220 > 2,/Toyo — 220 > 229 — 229 = 0. Finally, because
xo < yo and xoyo = zg + 1, we have g < \/Z(%Tv or g < z9. However,
Ty # 20, because this would imply that zoyo = 2& + 1, but zo 1 (28 + 1)
when zg > 1. Thus, zg — xg > 0, or z; > 0.

Therefore, (x1,y1,21) is a triple of positive integers (z,y, z) satisfying
ry = 22 + 1 and with z < z. By the induction hypothesis, we can write
z1=a’+b% y1 =c®+d? and 21 = ac + bd. Then

(ac+bd)? = 27 = 211 — 1
(a +0*)(c* +d*) — 1
= (a®c® + b*d* + 2abed) + (a*d* + b — 2abed) — 1
= (ac + bd)?(ad — bc)?

so that |ad — bc| = 1.

Now, note that zg = z1 = a?+b% and yp = z1+y1+221 = a’+b%+2+d>+
2(ac+bd) = (a+c)2+(b+d)2. In other words, 2o = a’>+b'% and yo = ¢>+d'*
for (a',V',c,d") = (a,b,a + ¢,b + d). Then |a'd’ — b'c/| = |Jad — be| = 1,
implying (by logic analogous to the reasoning in the previous paragraph)
that zg = a’c’ +b'd’, as desired. This completes the inductive step, and the

proof.
Problem 5.2.9. Find all pairs of sets A, B, which satisfy the conditions:
(i) AUB =1Z;

(i) if x € A, then x — 1 € B;
(iii) if x € B andy € B, then x +y € A.

(2002 Romanian IMO Team Selection Test)

Solution. We shall prove that either A = B = Z or A is the set of even
numbers and B the set of odd numbers.

First, assume that 0 € B. Then we have z € B, x+0 € A and so B C A.
Then Z = AUB C A and so A = Z. From (ii) we also find that B = Z.
Now, suppose that 0 ¢ B, thus 0 € A and —1 € B. Then, using (ii) we find
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—2€ A, -3 € B, =4 € A and by induction —2n € A and —2n — 1 € B,
vV n € N. Of course, 2 € A (otherwise 2 € Band 1 =2+ (—1) € A and
0=1-1¢€¢ B, false) and so 1 =2 —1 € B. Let n > 1 minimal with
2n € B. Then 2n—1 € A and 2(n—1) € B, contradiction. This shows that
2N C A\ B and all odd integers are in B \ A. One can also observe that
—1 ¢ A (otherwise —2 € B implies —1 € B ie. =1 € A) and so A = 2Z,
B=2Z+1.
Problem 5.2.10. Find all positive integers n such that

m

n=[](a+1),

k=0

where Ty Gm—1 - -- g 1S the decimal representation of n.
(2001 Japanese Mathematical Olympiad)

Solution. We claim that the only such n is 18. If n = @, ... a1ag, then
let

m

P(n) =[] (a; + 1.

§=0
Note that if s > 1 and ¢ is a single-digit number, then P(10s +t) =
(s 4+ 1)P(t). Using this we will prove two following statements.
Lemma 1. If P(s) < s, then P(10s +t) < 10s + ¢.
Proof. Indeed, if P(s) < s, then

10s+¢ > 10s > 10P(s) > (t + 1)P(s) = P(10s + t).

Equality must fail either in the first inequality (if ¢ # 0) or in the third
inequality (if ¢ # 9). O

Lemma 2. P(n) <n+1 for all n.

Proof. We prove this by induction on the number of digits of n. First, we
know that for all one-digit n, P(n) = n+1. Now suppose that P(n) < n+1
for all m-digit numbers n. Any (m+1)-digit number n is of the form 10s+t,

where s is an m-digit number. Then
t(P(s)—1)<9((s+1)—1)
tP(s) —10s —t < —s
P(s)(t+1)—10s—t < P(s) —s
P(10s+1t) — (10s +t) < P(s) —s < 1,
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completing the inductive step. Thus, P(n) < n + 1 for all n. |

If P(n) = n, then n has more than one digit and we may write n = 10s+t.
From the first statement, we have P(s) > s + 1. From the second one, we
have P(s) < s+ 1. Thus, P(s) = s + 1. Hence,

(t+1)P(s) = P(10s +¢) = 10s + ¢t

t+1)(s+1)=10s+1¢
1=(9—1)s.
This is possible if ¢ = 8 and s = 1, so the only possible n such that
P(n) =nis 18. Indeed, P(18) = (14+1)(8+1) = 18.
Problem 5.2.11. The sequence (un)n>0 s defined as follows: uy = 2,

U = 3 and

Unt1 = Un(u?_{ —2)—uy forn=1,2,...
+ n—1

2 (™

Prove that [u,] = 2
of x).

, for alln > 0 ([z] denotes the integer part

(18th IMO)

Solution. To start, we compute a few members of the sequence. Write
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2
1 1 1
_ 5 3
u5—<2 +ﬁ> (2 +2—3) —21—<2+§>
1 1 1 1
_ 5 6 _ oll
—<2 +2—5>(2 +2_6)_<2+§>_2 +2T

Taking into account the required result, we claim that u,, = 2% 4279
where a,, = ———

299

3 , V' n > 1. First, we observe that a,, is a positive
integer, because 2™ = (—1)" (mod 3).

Then, observe that claimed formula is true for n = 1,2,3,4,5. Using
induction and inductive formula which defined u,, we have:

2+

i = (20 220 2 =)= (24 5

1
= (20n +27%) (2%t 427201 — (2 + 5)

= 90nt2an_1 4 9=an=2an—1 | 92Gn_1—an | 9Gn—2an—1 _9 _ 9-1
We only have to consider the equalities:

ap + 20,1 = Ap41

20p_1 —a, = (—-1)",
which are easy to check. Hence, we obtain the general formula:

2m _(—" 1
3

Un:2 W7VTL21
27/ =

The required result,

2n _(—1)"

(4]

is now obvious.

5
Second solution. We have ug > 2, u; > 3 We prove by induction that

Uy > g, for all n > 1.

5_5/(25
The equation

1
T+ — =1uy
T
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has a unique real solution z,, with x,, > 1. Indeed, write the equation
under the form
2 —u,r+1=0

25
and we observe that A = qu —4 > — —4 > 0. The equation has two
positive real solutions, only one being greater than 1.
Therefore, there exists a unique real sequence (z,),>1 such that z, > 1
and

Ty + — = Up.
n

Put this formula in the definition for u,41 and obtain

1 1 T 2 5

Tnt1 + = i + 3 +( —— + — 1) -z

Tn+1 TpTo_q Tr_q Tn 2
We claim that the sequence (xy,),>1 is uniquely defined by one the con-

ditions:
Tpi1 = Tpx2 | (1)
=2 @)
‘Tnfl

Actually, from condition (1) and 1 = 2, 3 = 2 we deduce

wy =27 =2% gy =212 .212 = 2"

2N _(—1)"

and generally, x, = 27 3 . After that, the solution follows like in the
first part.

16.3 Infinite descent

Problem 5.3.2. Find all primes p for which there exist positive integers
x,y and n such that p™ = 23 + 3.

(2000 Hungarian Mathematical Olympiad)

Solution. Observe 2! = 13 + 13 and 3% = 23 + 13. We will prove that
the only answers are p = 2 or p = 3. Assume, by contradiction that there
exists p > 5 such that p” = 23 + y3 with z,y,n positive integers and n
of the smallest possible value. Hence at least one of z and y is greater
than 1. We have 23 + ¢3 = (z + y)(2? — 2y + y?) with  +y > 3 and
2?2 —zy+y? = (x—y)? +zy > 2. It follows that both x+y and 2% — zy +y?
are divisible by p. Therefore (z+vy)? — (22 — 2y +y?) = 32y is also divisible

by p. However, 3 is not divisible by p, so at least one of z or y must be
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divisible by p. As x 4 y is divisible by p, both z and y are divisible by p.
Then 23 + y2 > 2p® and necessarily n > 3. We obtain

3 3
e n () ()
53 3 3 ’
p p p p p

and this contradicts the minimality of n (see the remark after FMID Variant
1).

16.4 Inclusion-exclusion

Problem 5.4.2. The numbers from 1 to 1000000 can be colored black or
white. A permissible move consists of selecting a number from 1 to 1000000
and changing the color of that number and each number not relatively prime
to it. Initially all of the numbers are black. Is it possible to make a sequence

of moves after which all of the numbers are colored white?
(1999 Russian Mathematical Olympiad)

Solution. It is possible. We begin by proving the following lemma:

Lemma. Given a set S of positive integers, there is a subset T C S such
that every element of S divides an odd number of elements in T.

Proof. We prove the claim by induction on |S|, the number of elements
in S.If |S| =1 thenlet T = S.

If |S| > 1, then let a be the smallest element of S. Consider the set
S’ = S\ {a}, the set of the largest | S| — 1 elements in S. By induction there
is a subset 7V C S’ such that every element in S’ divides an odd number
of elements in T".

If a also divides an odd number of elements in 7", then the set T' = T"
suffices. Otherwise, consider the set ' = T'U{a}. a divides an odd number
of elements in T'. Every other element in T is bigger than a and can’t divide
it, but divides an odd number of elements in 77 = T'\ {a}. Hence T suffices,
completing the induction and the proof of the lemma. ([l

Now, write each number n > 1 in its prime factorization
__.a1,.a ak
n=p'py’...p.",

where the p; are distinct primes and the a; ate positive integers. Notice that

the color of n will always be the same as the color of P(n) = pips ... pg.
Apply the lemma to the set S consisting in all P(i) for ¢ =

2,3,...,1000000 to find a subset T C S such that every element of S
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divides an odd number of elements in T'. For each g € S, let ¢(q) equal the
number of elements in T that ¢ divides, and let u(q) equal the number of
primes dividing q.

Select all the numbers in T, and consider how the color of a number n > 1
changes. By the Inclusion-Exclusion Principle, the number of elements in

T not relatively prime to n equals

Y. (=M@ (g).

q|P(n),q>1

In particular, if ¢|P(n) is divisible by exactly m > 0 primes, then it is

counted (T) — (Z) + (Zf) — -+~ =1 time in the sum. (For example,

if n = 6 then the number of elements in 7' divisible by 2 or 3 equals
t(2) + t(3) — t(6).)

By the definition of T, each of the values ¢(¢) is odd. Because there are
2% — 1 divisors ¢ > 1 of P(n), the above quantity is the sum of 2 — 1 odd
numbers and is odd itself. Therefore after selecting 7', every number n > 1
will switch color an odd number of times and will turn white.

Finally, select 1 to turn 1 white to complete the process.

Note. In fact, a slight modification of the above proof shows that T is
unique. With some work, this stronger result implies that there is in essence
exactly one way to make all the numbers white up to trivial manipulations.

Second solution. Yes, it is possible. We prove a more general statement,
where we replace 1000000 in the problem by some arbitrary positive integer
m. We also focus on the numbers divisible by just a few primes instead of
all the primes.

Lemma. For a finite set of distinct primes S = {p1,p2,...,pn}, let
Qm(S) be the set of numbers between 2 and m divisible only by primes in
S. The elements of Qm(S) can be colored black or white. A permissible
move consists of selecting a number in Q. (S) and changing the color of
that number and each number not relatively prime to it. Then it is possible
to reverse the coloring of Qm(S) by selecting several numbers in a subset
Rn(S) € Qum(S).

Proof. We prove the lemma by induction on n. If n = 1, then selecting
p1 suffices. Now suppose n > 1, and assume without loss of generality that
the numbers are all black to start with.

Let T = {p1,p2,...,Pn-1}, and define ¢ to be the largest integer such

that tp, < m. We can assume t > 1 because otherwise we could ignore
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pn and just use the smaller set T, and we’d be done by our induction
hypothesis.

Now select the numbers in R,,(T), Ri(T), and p,Ri(T) = {pnz| = €
R,(T')}, and consider the effect of this action on a number y:

e y is not a multiple of p,. Selecting the numbers in R,,(T) makes
y white. If selecting x € R;(T') changes y’s color, selecting xp,, will
change it back so that y will become white.

e y is a power of p,. Selecting the numbers in R,,(T) and R:(T") has
no effect on y, but each of the |R,(T")| numbers in xR;(T") changes
y’s color.

e p,ly but y is not a power of p,. Selecting the numbers in R,,(7T)
makes y white. Because y # p,, it is divisible by some prime in T so
selecting the numbers in R;(T") makes y black again. Finally, each of
the |Ry(T")| numbers in xR;(T") changes y’s color.

Therefore, all the multiples of p,, are the same color (black if |R.(T')]| is
even, white if |R;(T)| is odd), while all the other numbers in @Q,,(S) are
white. If the multiples of p,, are still black, we can select p,, to make them
white, and we are done. ([

We now return to the original problem. Set m = 1000000, and let S be
the set of all primes under 1000000. From the lemma, we can select numbers
between 2 and 1000000 so that all the numbers 2,3,...,1000000 are white.
Finally, complete the process by selecting 1.
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17

Arithmetic Functions

17.1 Multiplicative functions

Problem 6.1.6. Let f be a function from the positive integers to the
integers satisfying f(m +n) = f(n) (mod m) for all myn > 1 (eg., a
polynomial with integer coefficients). Let g(n) be the number of values (in-
cluding repetitions) of f(1), f(2),..., f(n) divisible by n, and let h(n) be
the number of these values relatively prime to n. Show that g and h are

multiplicative functions related by

=S @ = H( ),

d|n
where n = p* ... pp* is the prime factorization of n.
(American Mathematical Monthly)

Solution. Let m and n be positive integers such that ged(m,n) = 1 and
let 1 <a <m,1 <b< n.From Chinese Remainder Theorem and the
properties of f it follows that m|f(a) and n|f(b) if and only if mn|f(z),
where © = z(a,b) is the unique integer such that z = a (mod m), © =
b (mod n), and 1 < z < min{m,n}. Thus g is multiplicative. For d|n,
the number of values of f(1),..., f(n) divisible by d is just gg(d). By a
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straightforward inclusion-exclusion count,

h(n)=n—= " —gp)+

i=1 4" 1<i<j<k

| 3

n
DiPj) — ...
pipj( iPj)

3

and we get
o = T (1 22)

i=1 Pi

Problem 6.1.7. Define \(1) = 1, and if n = p{* ... py*, define
An) = (1t e

1) Show that X\ is completely multiplicative.
2) Prove that

Z)\(d):{ 1 ifn is a square

0 otherwise
d|n

3) Find the convolutive inverse of A.
Solution. 1) Assume m = pi'...pp* and n = pi' ...p’g’“, where
at,...,ak, B1,...,0k > 0. Then mn:p?lJﬁB1 ...pz"“+ﬁk and

Amn) = (_1)a1+[31+---+ak+ﬁk _ (_1)a1+---+ak(_1)[31+---+ﬁk = \(m)A(n).

2) Because A is multiplicative, according to Theorem 6.1.2, it follows that
its summation function A has also this property. Therefore, it is sufficient

to calculate A on a power of a prime. we have

1 if a even

A(p“)=A(1)+A(p)+---+A(p‘”‘)={0 4 o odd

If n=pi"...pg%, then A(n) = A(p7") ... A(pp*) =1ifall ay, ..., o are
even and 0 otherwise. Hence

An) 1 if nis a square
n)=
0 otherwise

3) Let g be the convolution inverse of A\. From Problem 1.6.4.2) it follows
that ¢ is multiplicative, hence it is perfectly by its values on powers of
primes. From g+ A = € we get (g*A)(p) = g(1)A(p)+9(p)A(1) = —1+g(p) =
0,i.e. g(p) = 1 for any prime p. Also, (g*\)(p?) = 0 implies 1 —1+g(p?) = 0,
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i.e. g(p?) = 0. A simple inductive argument shows that g(p®) = 0 for any
positive integer o > 2. It follows

1 if n=1
g(n) =< 0 if p?|n for some prime p > 1
1 if n=py...pg, where py,...,pr are distinct primes,

i.e. g = pu?, where p is the Mobius function.

Problem 6.1.8. Let an integer n > 1 be factored into primes: n =
Pt ... p%m (p; distinct) and let its own positive integral exponents be fac-
tored similarly. The process is to be repeated until it terminates with a
unique “constellation” of prime numbers. For example, the constellation
for 192 is 192 = 22°3 .3 and for 10000 is 10000 = 22° - 52. Call an arith-
metic function g generally multiplicative if g(ab) = g(a)g(b) whenever the
constellations for a and b have no prime in common.

1) Prove that every multiplicative function is generally multiplicative. Is
the converse true?

2) Let h be an additive function (i.e. h(ab) = h(a) + h(b) whenever
gcd(a,b) = 1). Call a function k generally additive if k(ab) = k(a) + k(b)
whenever the constellations for a and b have no prime in common. Prove
that every additive function is generally additive. Is the converse true?

(American Mathematical Monthly)

Solution. 1) Let f be multiplicative. If the constellations for a and b
have no prime in common, then the same is true of their factorizations, so
f(ab) = f(a)f(b). Hence f is generally multiplicative.

The converse is not true. Indeed, define g(a) to the product of all primes
in the constellation of a, taken once only, regardless of how many times
they appear in the constellation. Then g is clearly generally multiplicative,
but ¢(9) =6, g(2) =2 and ¢(18) =6, so g(9-2) # g(9)g(2).

2) The statement ”additive implies generally additive” can be proved in
the same way. If k(a) is the sum of all primes in the constellation of a each
taken once only, then k is generally additive but k(9) = 5, k(2) = 2 and
k(18) = 5.

17.2 Number of divisors

Problem 6.2.5. Does there exist a positive integer such that the product

of its proper divisors ends with exactly 2001 zeroes?
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(2001 Russian Mathematical Olympiad)

Solution. Yes. Given an integer n with 7(n) is equal to

0] ([ | = [T]dn/d) = Vo7

d|n d|n d|n

Thus, the product of all proper positive divisors of n equals

n%'r(n)—l
k
Ifn= sz'i with the p;’s distinct primes and the g;’s positive integers,

i=1

T

then 7(n) = H(Qi +1). Hence, if we set n = 2! .51 .76.1110.1312 then
i=1
1

1
57’(71)—1:5(2-2-7~11-13)—1:2001.

Thus, the product of the proper divisors of n is equal to 22001 . 52001 .

76-2001 . 17110-2001 . 13122001 "ap integer ending in exactly 2001 zeroes.

Problem 6.2.6. Prove that the number of divisors of the form 4k + 1 of
each positive integer is not less than the number of its divisors of the form
4k + 3.

Solution. To solve the problem, consider the function

0, if niseven
f(n) = 1, if n=1 (mod 4)
-1, if n=3 (mod4).

It follows directly from this definition that f(n) is multiplicative. Now
we apply (1). The even divisors of n do not influence its left-hand side.
Each divisor of the form 4k + 1 contributes a 1, and each divisor of the
form 4k + 3 contributes a — 1. Consequently, it suffices to prove that the

summation function of f, Z f(d) is nonnegative for each positive integer

d|n
n.

Take any prime divisor p; of n. If p; =1 (mod 4), then the same congru-
ence holds for all powers of p;, so the ith factor in the right-hand side of
(1) is positive. If p; is congruent to 3 modulo 4, then so are its odd powers

while the even powers are congruent to 1 modulo 4. In this case the ith
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factor in the right-hand side has the form 1—14+1—1+..., and it equals
1 or 0 according as «; is even or odd. Summing up, we conclude that the
sum in question is nonnegative.

Problem 6.2.7. Let dy,ds,...,d; be all positive divisors of a positive
integer. For each i = 1,2,...,1 denote by a; the number of divisors of d;.
Then

al+ad+--+a} = (a1 +ag+-+a)?

Solution. We have

k
mtazteta =) 7(d) = [[(1+7@)+ o+ 7))
dln i=1
k
ai +ai++af = 7(d)? =[O0 +7p)®+ -+ 7))
dn i=1

k

where n = p{" ...py* is the prime factorization of n.

Since
L+7(p) +- 7)) =14+24 -+ (a; + 1)
and

14+7(pi) %+ +7(pf)? = 1342% 4 -+ (a+i+1)? = [1424- -+ (a+i+1)]?,

the conclusion follows.
For example, if n = 12 we have dy = 1, dy = 2, d3 = 3, dy = 4, d5 = 6,
ds=12;a1=1,a2=2,a3 =2, a4 = 3, a5 = 4, ag = 6 and

P+28 422433443 4+6°=324=(1+2+2+3+446)>
Remark. The above identity shows that solving the equation
(1 +xo+ - Fxp) 2= +ad+- - a3
is positive integers is a very difficult job. If we assume that z; # xz; for
i # 7, there are only a few solutions. Try to prove this last assertion.
17.3 Sum of divisors

Problem 6.3.5. For anyn > 2,

o(n) < ny/27(n).
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(1999 Belarusian Mathematical Olympiad)

Solution. Let dy, ds, . . ., d. () be the divisors of n. They can be rewritten
in the form
n n n
d17d2’.“’d7(n).

By the Power Mean Inequality,

Now,
1 7(n) , 2
- d- -
n? ; v 6

Hence
27(n)

Problem 6.3.6. Find all the four-digit numbers so that when decomposed
in prime factors have the sum of the prime factors equal to the sum of the
exponents.

Solution. 1) If the number has at least four prime divisors, then n >
214.3.5.7 > 9999, a contradiction.

2) If n has 3 prime divisors, these must be 2, 3 or 5. The numbers are

28.3.5=123840, 27-3%2.5=5760, 2°-3%.5 = 8640 and 27 - 3 - 5% = 9600.

3) If n has 2 prime divisors, at least one of them must be 2 or 3. The

numbers
24.5% = 2000, 2%-5* =5000, 28 -7 =1792, 27- 7% = 6272

satisfy the solutions.

4) If n has only one prime factor, then 5° = 3125.

Therefore there are 9 solutions.

Problem 6.3.7. Let m,n,k be positive integers with n > 1. Show that
o(n)k #nm.

(2001 St. Petersburg City Mathematical Olympiad)
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Solution. Let n = p§'ps? ... p5*. Because o(n) > n, if o(n)k = n™, then
o(n) = p{1p£2 .. .pi’“ where f; > e;. This implies f; > e; + 1, for all ¢ and

1+eq 1+es 1+eg
1+ey l4es 1+er  P1 —1p; -1 Py -1
on)>p 2 ) > e
() ! ? F pr—1 p2—1 pr— 1

=@ +pr+ )+ 2+ p5) (L pr oo+ piF)

= o(n).

This is a contradiction.
Remark. Actually, we have shown that for n > 1, o(n) has a prime
factor different from any prime factor of n!.

17.4 Fuler’s totient function

Problem 6.4.5. For a positive integer n, let 1 (n) be the number of prime
factors of n. Show that if p(n) divides n—1 and 1p(n) < 3, then n is prime.

(1998 Korean Mathematical Olympiad)

Solution. Note that for prime p, if p?|n then p|p(n) but p t n — 1,
contradiction. So we need only show that n # pg, n # pgr for primes
p<qg<tr.

First assume n = pq, so (p — 1)(q¢ — 1)|pg — 1. Note that ¢ > 3 implies
that the left side is even, so the right is too and p, ¢ are odd. But if p = 3,
q = 5 then

_pg—1
(p—1(g—1)

the left side is decreasing in each variable and always > 1 so it cannot be

< 2;

an integer, contradiction.
Now let n = pgr. As before p,q,r are odd; if p =3, ¢ =7, and r = 11

then
pgr — 1

(p—D—-1)(r-1)

and again the left side is decreasing and > 1; this eliminates all cases except

<2

where p = 3, ¢ = 5. Then for r = 7 we have

pgr —1
(p—1D(g—1(r—-1)

so the only integer value ever attainable is 2. Note that (15r—1)/8(r—1) = 2

gives r = 15 which is not a prime and we have eliminated all cases.

<3
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Remarks. 1) The problem is a direct consequence of Problem 1.1.16.

2) A long stonaling conjecture due to Lehmer asserts that if ¢(n)ln — 1,
then n is a prime. This has been proved so far for ¥(n) < 14. The proofs
are very long and computational and no further progress has been made
on this conjecture.

Problem 6.4.6. Show that the equation ¢(n) = 7(n) has only the solu-
tions n =1, 3,8, 10, 18, 24, 30.

Solution. We check directly that the listed integers satisfy the equation
and there are no others < 30 with this property. We will prove that for
n > 31, p(n) > 7(n). For this we consider the multiplicative function

-1
f(n) = M If n is a prime, we have f(n) = L

7(n)

the set of primes.

, hence f increases on

For a prime p, define S, = {p®|a > 1}. Because

a—1
p*p—1) P 2 1
d >
atr1 o a+2_a+2>a+l’

f(p*) =

we obtain f(p®™!) > f(p®), that is f increases on S,. Using the fact that
min f(p®) = f(2) = 2 it follows that in order to solve the given equation
P

we need to consider the integers p® with f(p®) < 2. These are 2, 3, 4, 5, 8,
9, 16, whose prime factors are only 2, 3, or 5 and the conclusion follows.
Problem 6.4.7. Let n > 6 be an integer and a1, aq, ..., ax be all positive

integers less than n and relatively prime to n. If
Ao — a1 =0a3 — Qg =+ =ap — ax—1 > 0,
prove that n must be either a prime number or a power of 2.
(3274 IMO)

Solution. It is given that the reduced system of residues modn chosen
from the set {1,2,...,n — 1} is an arithmetic progression. We write it as
an increasing sequence 1 = a1 < ags < --- < axp =n— 1.

For a prime number n the reduced system of residues is the sequence
1 <2< - <n-—1anditis an arithmetic progression with ratio 1. If
n = 2! the reduced system of residues is 1 < 3 <5 < --- < 2! — 1 and it
is an arithmetic progression with ratio 2. The problem asks to prove that
only these cases can appear.

Let ag be the second member of the progression. Because as > 1 is the

least positive number relatively prime to n, it is a prime number, say p
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and p > 3. Then, the ratio of the progression is as —a; = p — 1 and
ar=n—1=1+4(k—1)(p — 1). We obtain a "key” formula:

n—2=(k-1)(p-1).

Remembering the choice of p, n is divisible by 3 and then n — 2 = 1
(mod 3). Thus, by the key formula we cannot have p = 1 (mod 3). Since
p > 3 we have p = 2 (mod 3). Then ag = 14+2(p—1) =0 (mod 3) and this
contradicts the supposition that as and n are relatively prime numbers.

17.5 Exponent of a prime and Legendre’s formula

Problem 6.5.7. a) If p is a prime, prove that for any positive integer

n7
Inn L] 1 n
- \‘HJ +n ; ]? <ep(n)<p_1.
b) Prove that
lim ep(n) - .
n—oo N p—1

Solution. a) From Legendre’s formula,

o0
n
=Y |5 <X ke =t

i>1 LP k>1p j=1 PP -1
For the left bound note that J is the least nonnegative integer s

such that n < p**t1. That is {%J for k> s+ 1. It follows that

and we are done.

b) From the inequalities

Inn
1 |lnn L] 1 ey(n) 1
— =1+ Y =< <—
n |Inp pk n p—1
k=1
and the fact that
Inn
li Ml o and Ejl !
im — |— | = n im - =
n—oco N lnp n—o0 =1 pk p_]'7
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the desired formula follows.
Problem 6.5.8. Show that for all nonnegative integers m,n the number

(2m)!(2n)!
mln!(m + n)!

s also an integer.
(14" IMO)
Solution. It is sufficient to prove that for any prime number p
ep(2m) +€,(2n) > ep(m) + €,(n) + ep(m +n).
Again, it is sufficient to prove that for all 4, j > 1, the following inequality

= [ ) 5]

It follows from a more general result.

Lemma. For any real numbers a,b

[2a] +|2b] > |a] + [b] + |a+b].

Proof. Let a = |a| +x, b= [b] +y where 0 < z,y < 1. If x +y < 1 we
have |a + b| = |a] + |b] and the required inequality becomes:

[2a] + [2b] > 2(|a] + |b]).

In this form, it is obvious.
Let 1 <z 4y < 2. Then 2x > 1 or 2y > 1. Let 22 > 1. Then

12a] =2|a)+1 and |a+b] = |a] + [b] + 1.
Thus:
12a] + |2b) = 2[a) + 1 + [2b] > 2|a) + 1+ 2[b] = [a] + [b] + la +b].
The other cases follow in a similar way.

(3a + 3b)!(2a)!(30)!(2b)!
Problem 6.5.9. Prove that (Za+ 30)a + 26)(a + b)lal (012

ger for any positive integers a, b.

is an inte-

(American Mathematical Monthly)
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Solution. First, let us clearify something. When we write

el ]+

n
we write in fact Z {_’“J and this sum has clearly a finite number of non-
E>1
zero terms. Now, let us take a prime p and let us apply Legendre’s formula

formula as well as the first observations. We find that

Up((3a+3b)!(2a)!(3b)!(2b)!):Z(f’a':?’bJ N FgJ N PﬁJ N V_’?D

= p p p p

and also
v, ((2a + 3b)!(a + 2b)!(a + b)la!(b)?)

(- N SR PR )

Of course, it is enough to prove that for each k > 1 the term correspond-

ing to k in the first sum is greater than or equal to the term corresponding
a b
to k in the second sum. With the substitution x = —, y = —, we have to

prove that for any nonnegative real numbers x,y we have
[3z+3y|+ [2x] + [3y|+ [2y] > [22+3y] + [z +2y |+ [z +y] + [=] +2]y].

This isn’t easy, but with another useful idea the inequality will become
easy. The idea is that

13z +3y| = 3[x| + 3y + [3{«} + 3{y}]

and similar relations for the other terms of the inequality. After this oper-
ation, we see that it suffices to prove the inequality only for 0 < x,y < 1.
Because we can easily compute all terms, after splitting in some cases, so
that to see when |2{z}]|, |3{y}], |2{y}] are 0, 1 or 2.

Problem 6.5.10. Prove that there exists a constant ¢ such that for any

positive integers a,b,n that verify a! - bl|n! we have a +b < n + clnn.
(Paul Erdds)

Solution. This time the second formula for e,(n) is useful. Of course,
there is no reasonable estimation of this constant, so we should better

see what happens if a! - bl|n!. Then ex(a) + ea(b) < ea(n!), which can be
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translated as a—Sz2(a)+b—952(b) < n—S3(n) < n. So, we have found almost
exactly what we needed: a + b < n + Sz(a) + S2(b). Now, we need another
observation: the sum of digits of a number A when written in binary is
at most the number of digits of A in base 2, which is 1 + [log, A| (this
follows from the fact that 2¢=1 < A < 2¥_ where k is the number of digits
of A in base 2). So, we have the estimations a + b < n + Sa(a) + S2(b) <
n+2+logyab < n+ 2+ 2log,n (since we have of course a,b < n). And
now the conclusion is immediate.
Problem 6.5.11. Prove that the equation

1 n 1 o 1
10" ny! mel ng!

does not have integer solutions such that 1 <nj <mng < --- < ng.
(Tuymaada Olimpiad)

Solution. Suppose we have found a solution of the equation and let us
consider

P=niln!...ngl.

We have
10"((nr+1)...(ng —Dngg+ -+ (ng—1 + 1) ... (g — Dng + 1) = ny!

which shows that nj divides 10™. Let us write ny = 2% - 5. First of all,

suppose that x,y are positive. Thus,
(mi+1)...(ng—Dngg+--+(mg—1+1)...(nk — Dnyg + 1

is relatively prime with 10 and it follows that ez(ny) = e5(ng). This implies
nk| _ | Nk . ] i

of course that b—]J = L’)—JJ for all j (because we clearly have L 2],J >

{%J ) and so ng < 3. A verification by hand shows that there is no solution

in this case.

Next, suppose that y = 0. Then
(mi+1)...(ng—Dng+-+mg—1+1)...(ng — Dng + 1

is odd and thus e2(ng) = n < es(nk). Again this implies es(ng) = es(nyg)
and we have seen that this gives no solution. So, actually z = 0. A crucial
observation is that if ny > ng_1 + 1, then

(mi+1)...(ng—Dngg+-+(mg—1+1)...(ng — Dny + 1
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is again odd and thus we find again that ea(ny) = n < es(ng), impossible.
So, ny = nk—1 + 1. But then, taking into account that ny is a power of 5,
we deduce that

(mi+1)...(ng—Dngg+--+(mg—1+1)...(nk — Dny + 1

is congruent to 2 modulo 4 and thus es(ng) = n+1 < es(ng)+ 1. It follows
that {%J <1+ {%J and thus n; < 6. Since ny is a power of 5, we find
that ny = 5, nx_1 = and a quick research of all possibilities shows that

there are no solutions.
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18
More on Divisibility

18.1 Fermat’s Little Theorem

Problem 7.1.11. Let 3™ — 2™ be a power of a prime for some positive
integer n. Prove that n is a prime.

Solution. Let 3" — 2™ = p® for some prime p and some « > 1, and let
q be a prime divisor of n. Assume that ¢ # n; then n = kq, where k > 1.
Since p* = 3k — 2k4 = (3k)7 — (2)7  we observe that p® is divisible by
3% — 2k Hence 3% — 2¥ = pP for some 3 > 1. Now we have

e = (2k +p6)q _ okq
-1
N %ka—z)pw T

Since a > 3 (because p® = 3F — 2F is less than p® = 3k7 — 2k9) it
follows that p® is divisible by a power of p at least as great as p”+!. Then
the above equality implies that p divides ¢2¥(¢=1) . On the other hand, p
is obviously odd and hence it divides ¢. Being a prime, ¢ must be then
equal to p. Therefore n = kq = kp and p® = (3P)* — (2P)* is divisible by
3P — 3P implying 3P — 2P = p? for some v > 1. In particular, we infer that
3P = 2P (mod p). Now, observing that p # 2,3, we reach a contradiction
with Fermat’s Little Theorem, by which

3=3 (modp), 2P=2 (mod p).
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Problem 7.1.12. Let f(x1,...,2,) be a polynomial with integer coeffi-
cients of total degree less than n. Show that the number of ordered n-tuples
(x1,...,2n) with 0 < xz; < 12 such that f(x1,...,2,) = 0 (mod 13) is
divisible by 13.

(1998 Turkish Mathematical Olympiad)

Solution. (All congruences in this problem are modulo 13.) We claim
that

12
Zxk50f0r0§k<12.
=0

The case k = 0 is obvious, so suppose k > 0. Let g be a primitive root

modulo 13; then the numbers g, 2g,...,12¢g are 1,2,...,12 in some order,

SO

12 12 12
Z k } : E_ Kk 2 : k.
x=0 x=0 x=0
12
since ¢* # 1, we must have E 2 = 0. This proves our claim.
=0

Now let S = {(z1,...,2,)[0 < z; < 12}. It suffices to show that the
number of n-tuples (z1,...,z,) € S with f(z1,...,2,) # 0 is divisible by
13, since |S| = 13™ is divisible by 13. Consider the sum

Yoo (. m)
(Z1,..,20)ES

This sum counts the number of n-tuples (z1,...,2,) € S such that
f(z1,...,z,) #Z0, since by Fermat’s Little Theorem

1, if fla1,...,20) 20

12
(f(xh...,ﬂ?n)) :{0, if f(xh...,wn)EO.

On the other hand, we can expand (f(z1,...,,))'? in the form
N n
(F@r o)=Y ¢ [[ o2
j=1 i=1

for some integers IV, ¢;, e;;. Since f is a polynomial of total degree less than
n, we have ej1 +ejo + - -+ ¢ej, < 12n for every j, so for each j there exists
an i such that e;; < 12. Thus by our claim

n 12

n
. Gt — . Gt —
E ch;vi —CJHE ;=0

(z1,..,zn)ES =1 i=12=0
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since one of the sums in the product is 0. Therefore

n

N
Z (f(z1,...,20)) "2 = Z Zqu? =0,

(T1,...,xn)ES (1,..,zn)ES j=1  i=1

so the number of (z1,...,z,) such that f(z1,...,2,) Z 0 (mod 13) divis-
ible by 13 and we are done.

Problem 7.1.13. Find all pairs (m,n) of positive integers, with m,n >
2, such that a™ — 1 is divisible by m for each a € {1,2,...,n}.

(2001 Romanian IMO Team Selection Test)

Solution. The solution is the set of all (p,p — 1), for odd primes p. The
fact that all of these pairs are indeed solutions follows immediately from
Fermat’s Little Theorem. Now we show that no other solutions exist.

Suppose that (m,n) is a solution. Let p be a prime dividing m. We first
observe that p > n. Otherwise, we could take a = p, and then p"™ — 1 would
not be divisible by p, and alone m. Then because n > 2, we have p > 3 and
hence p is odd.

Now we prove that p < n 4 2. Suppose on the contrary that p > n + 2.
If n is odd, then n + 1 is even and less than p. Otherwise, if n is even, then
n+ 2 is even and hence less than p as well, because p is odd. In either case,

d d
there exists an even d such that n < d < p with 3 < n. Setting a = 2, 3
in the given condition, we find that

d"EZ”(C—i) =1-1=1 (mod m),

so that d* —1 = 0 (mod m) as well. Because n < d < p < m, we see
that 1,2,...,n,d are n + 1 distinct roots of the polynomial congruence
2" — 1 = 0 (mod p). By Lagrange’s Theorem, however, this congruence
can have at most n roots, a contradiction.

Thus, we have sandwiched p between n and n+2, and the only possibility
is that p = n + 1. Therefore, all solutions are of the form (p¥,p — 1) with
p an odd prime. It remains to prove that k = 1. Usinga =n =p—1, it
suffices to prove that

PPt -1t 1.
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Expanding the term (p — 1)?~! modulo p?, and recalling that p is odd,
we have

7

— (pg 1) (_l)pfl i (pz 1) (_1)p72p
1
2

R Dl (e [T

It follows immediately that k cannot be greater than 1, completing the
proof.

Problem 7.1.14. Let p be a prime and by an integer, 0 < by < p. Prove
that there exists a unique sequence of base p digits by, b1,ba, ... by, ... with
the following property: If the base p representation of a number x ends in
the group of digits bpby,_1...b1bg then so does the representation of xP.

Solution. We are looking for a sequence by, b1,b2,...,b,,... of base p
digits such that the numbers z,, = bg+bi1p+- - -+b,p™ and =P are congruent
modulo p™t! for each n = 0,1,2,... Of course, the choice of the first term
bo is predetermined, and given in the problem statement; let us note that
the numbers zop = by and z} are congruent modulo p by Fermat’s Little
Theorem. Suppose that the base p digits by, bs, ..., b, are already chosen
in such a way that 2 = x,, (mod p"*!). We shall prove that there is a
unique digit b,y such that

(xn + bn+1pn+1)p =T, + bn+1pn—"_1 (mOd pn+2);

this proves the existence and the uniqueness at the same time. Since

(2 + bpp1p"THP = 2P + (?) P, p™ T+ Cp 2

for some integer constant C', and since (f) is divisible by p, we get

(xn + bn+1pn+1)p = xﬁ (mOd pn+2).
Hence b,, 1 should satisfy the congruence

2 — 2y —bpp1p" T =0 (mod p"*t?). (1)

By the induction hypothesis, the number 22 — x,, is divisible by p"*!.
This implies that its (n + 2)nd base p digit (from the right to left) is
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indeed the only choice for b,,11 such that (1) holds. The inductive proof is

complete.
Problem 7.1.15. Determine all integers n > 1 such that 5— is an
n
mteger.
(315t IMO)

Solution. We will prove that the problem has only solution n = 3. First,
observe that n is odd number. Then, we prove that 3|n.

Let p be the least prime divisor of n. Since n?|2"+1,2"+1 =0 (mod p)
and 22" = 1 (mod p). By Fermat’s Little Theorem, 2P~! = 1 (mod 3).
Then 2¢ = 1 (mod p), where d = ged(p — 1,2n). By the definition of p,
d has no prime divisor greater than 2, which shows that d = 2. It follows
p=3.

Let n = 3¥m, where k£ > 1 and (3, m) = 1. Using the identity

Bk'fl

2 1= (z+ D)2 -+ 1) (@* -3 +1)... (x2'3k71 -z +1)
we obtain the decomposition:
28 M1 = (2M 1) (22 M 1)(223m _g3m 1) (323F Tm g8 Im
(1)

Since 22° — 25+ 1 =3 (mod 9) for s of the form 3/ we obtain in (1) that
3k|(22m _ 2m 4 1)(2237?7, _ 23m + 1) L (22'3k71m _ 23k71m 4 1)

but 3**! does not divides the product. Therefore, 3¥|2™ 4 1. Since 3 does
not divide m and

omp1=3m— (M)gmtp . ™ )3
1 m—1

we obtain k = 1.

Now, we have n = 3m and 9m?|23™ + 1. We repeat, in some way, the
starting argument. Take ¢ the least prime divisor of m, 2™ = 1 (mod q)
and 2971 = 1 (mod ¢q), § = ged(6m,q — 1). By the definition of ¢ we can
have § = 1,2,3 or 6 and we also have 2° = 1 (mod ¢). Thus ¢ can be chosen
among prime divisors of the numbers 3, 7, 63. Since ¢ > 3, we can have
only ¢ = 7. Returning to m?2|23™ + 1, we obtain 49[23™ + 1. But we have
23m + 1 =2 (mod 7) and we get a contradiction.

Thus, m =1 and n = 3.
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Problem 7.1.16. Let p be a prime number. Prove that there exists a
prime number q such that for every integer n, the number n? — p is not

divisible by q.
(44" IMO)

Solution. Suppose that for every prime ¢, there exists an n for which
nP = p (mod ¢). Assume that ¢ = kp + 1. By Fermat’s Little Theorem we
deduce that p¥ = n*? =n9=1 =1 (mod q), so ¢|p* — 1.

It is known that any prime ¢ such that ¢| must satisfy ¢ = 1

(mod p). Indeed, from ¢|p?—'—1 it follows that ¢|p9°?P4=1) —1: but ¢ { p—1
P 1
T = 1 (mod p—1), so ged(p,q—1) # 1. Hence ged(p,q—1) =

p
because

pp

-1
T Then q|ged(pF —1,pP—1) =

p. Now suppose ¢ is any prime divisor of

p9ed(®-k) _ 1 which implies that ged(p, k) > 1, so p|k. Consequently ¢ = 1
Y

=pP '+ ...+ p+ 1 must have

(mod p?). However, the number b

at least one prime divisor that is not congruent to 1 modulo p?. Thus we
arrived at a contradiction.

Remark. Taking ¢ = 1 (mod p) is natural, because for every other g, nP
takes all possible residues modulo p (including p too). Indeed, if p{ ¢ — 1,
then there is an r € N satisfying pr = 1 (mod g — 1); hence for any a the
congruence n? = a (mod ¢) has the solution n = a” (mod q).

The statement of the problem itself is a special case of the Chebotarev
theorem.

Problem 7.1.17. Prove that for any n > 1 we cannot have n|2"~1 +1.

(Sierpinski)

S
Solution. Although very short, the proof is tricky. Let n = H pf where
i=1
p1 < --- < ps are prime numbers. The idea is to look at ve(p; — 1). Choose

that p; which minimizes this quantity and write p; = 1 + 2"im; with m;
odd. Then of course we have n =1 (mod 2™+). Hence we can write n—1 =
2t We have 22"t = —1 (mod p;) thus we surely have —1 = 22"t =
2(Pi=Dt = 1 (mod p;) (the last congruence being derived from Fermat’s

theorem). Thus p; = 2, which is clearly impossible.
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Problem 7.1.18. Prove that for any natural number n, n! is a divisor

of

n—1

[J@—25.

k=0

Solution. So, let us take a prime number p. Of course, for the argument
to be non-trivial, we take p < n (otherwise doesn’t divide n!). First, let us
see what happens with p = 2. We have

es(n) =n—S((n)<n-1

and also - -
vy <H(2” — 2’“)) =) m@ -2%)>n-1
k=0 k=0
(since 2" — 2% is even for k > 1), so we are done with this case. Now, let us
assume that p > 2. We have p|2P~! — 1 from Fermat’s theorem, so we also
have p|2F(P=1) — 1 for all k > 1. Now,

n—1

H(Q" B Zk) _ 2n(n2—1)

k=0 k=1

(2" -1)

=

and so, from the above remarks we infer that
n—1 n
vy (H(z” - 2’“)) = (2" 1)
k=0 k=1

> Z v (2FPD — 1) > card{k|1 < k(p—1) <n}
1<k(p—1)<n

card{k|1 < k(p—1) <n} = [pf J :

we have found that

n—1
n

vy (H(z“-?ﬂ)) > [ _1].

k=0 p
But we know that
n—sp(n) n—1 n
f— <
e2(n) p—1 7p—1<p—1

and since eg(n) is an integer, we must have

es(n) < [pﬁl} :
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From these two inequalities, we conclude that

Vg (1:[(2" — 2’“)) > ea(n)
k=0

and now the problem is solved.

18.2 FEuler’s Theorem

Problem 7.2.5. Prove that, for every positive integer n, there exists a
polynomial with integer coefficients whose values at 1,2, ..., n are different

powers of 2.
(1999 Hungarian Mathematical Olympiad)

Solution. It suffices to prove the claim when n > 4, because the same

polynomials which works for n > 4 works forn < 3. Foreachi =1,2,...,n,

consider the product s; = H(z — j). Because n > 4, one of the terms
j=1
J#i
1 — 7 equals 2 and s; is even. Thus, we can write s; = 2%m; for positive
integers gq;, m; with m; odd. Let L be the least common multiple of all the

gi, and let r; = L/q;. For each i, there are infinitely many powers of 2

which are congruent to 1 modulo |m;*|. (Specifically, by Euler’s Theorem,
2¢(Im*i = 1 (mod |m;

integers ¢; such that ¢;m." + 1 is a power of 2. Choose such ¢;, and define

) for all 5 > 0. Thus there are infinitely many

P(:r):Zci H(:r—j) + 2%,
i=1 j=1
J#
For each k, 1 < k < n, in the sum each term H(x =) vanishes
j=1
J#i
for all ¢ # k. Then
Pk) = | [T =5) | +2" =25 (cmi +1),
j=1
ik
a power of 2. Moreover, by choosing the ¢; appropriately, we can guarantee

that these values are all distinct, as needed.



18.2. EULER’S THEOREM 327

Problem 7.2.6. Let a > 1 be an odd positive integer. Find the least
positive integer n such that 22°°0 is a divisor of a™ — 1.

(2000 Romanian IMO Team Selection Test)

Solution. Since a is odd, (a,2*) = 1, for any k > 0. Hence, by Euler’s
Theorem, a??") =1 (mod 2%). Since ¢(2%) = 2¢~! and we are looking for
the least exponent n such that a” = 1 (mod 22°90) it follows that n is a
divisor of 21999 = (22000,

If a =1 (mod 22°99) it follows that n = 1. We shall omit this case.

Consider the decomposition:

2m—1

@@ —1=(—-1Da+1)@®+1)® +1)...(2"  +1).

Assume a = 1 (mod 2°) and a #Z 1 (mod 2°*1), where 2 < s < 1999.
That is, a = 2°b + 1, where b is an odd number. Equivalently, a has the
binary representation

a=1...100...1.

sdigits

It is easy to show that for any integer =, 2 4+ 1 is not divisible by 4.
Then, by the above decomposition a2 — 1 is divisible by 2°T™ and it is
not divisible by 25t™*!, Hence, the required number is 22000—5,

Assume that @ = —1 (mod 2°%) and @ #Z —1 (mod 2°*1), where s > 2.

Equivalently, a has the binary representation

sdigits

Like before, a — 1 is divisible by 2 and nondivisible by 2% and a2 +1is
divisible by 2 and nondivisible by 22, V k > 1. From the above decompo-
sition a?” — 1 is divisible by 2°*™ and nondivisible by 2°t™+*1 Hence, in
this case, the required exponent is n = 2'999~% when s < 1999 and n = 2,
when s > 1999.

Problem 7.2.7. Let n = pi'...p* be the prime factorization of the
positive integer n and let r > 2 be an integer. Prove that the following are
equivalent:

(a) The equation " = a (mod n) has a solution for every a.

(b)ri=ro=---=rp=1and (p;—1,r) =1 for everyi € {1,2,...,k}.

(1995 UNESCO Mathematical Contest)
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Solution. If (b) holds, then ¢(n) = (p1 —1)...(pr — 1) is coprime to
r, thus there exists s with rs = 1 (mod ¢(n)), and the unique solution
of 2" = a (mod n) is a = x*. Conversely, suppose 2" = a (mod n) has a
solution for every a; then 2" = a (mod p;*) also has a solution for every a.
However, if 71 > a and a is a number divisible by p but not by p?, then z"
cannot be congruent to a, since it is not divisible by p unless x is divisible
by p, in which case it is already divisible by p?. Hence r, = 1.

Let d = (p;—1,7) and put m = (p; —1)/d. If " = a (mod p;) and a # 0,
then

rm pi—1 =1

(mod p;).

However, if a is a primitive root of p;, then this only occurs for m =0
(mod p; — 1), which implies d = 1. Hence r; = 1 and (r,p; — 1) = 1, as
desired.

18.3 The order of an element

Problem 7.3.6. Find all ordered triples of primes (p,q,r) such that

plg" + 1,q|r" + 1,7p? + 1.

(2003 USA IMO Team Selection Test)

Solution. It is quite clear that p, g, are distinct. Indeed, if for example
p = q, then the relation p|¢”+1 is impossible. We will prove that we cannot
have p, ¢, > 2. Suppose this is the case. The first condition p|¢"+1 implies
plg®" — 1 and so o,(q)|2r. If 0,(q) is odd, it follows that p|¢" — 1, which
combined with pl¢” + 1 yields p = 2, which is impossible. Thus, 0,(q) is
either 2 or 2r. Could we have o,(q) = 2r? No, since this would imply that
2r[p —1 and so 0 = p? 4+ 1 (mod r) = 2 (mod r), that is » = 2, false.
Therefore, the only possibility is 0,(q) = 2 and so p|¢g* — 1. We cannot have

1
plg — 1, because p|¢” + 1 and p # 2. Thus, p|¢ + 1 and in fact p|% In

1 1
the same way, we find that g| % and r|1% This is clearly impossible,

just by looking at the largest among p, ¢, . So, our assumption was wrong
and indeed one of the three primes must equal 2. Suppose without loss
of generality that p = 2. Then ¢ is odd, ¢|r? + 1 and 7|29 + 1. Similarly,
0-(2)2q. If qlo.(2), then g|r — 1 and so ¢|r?> + 1 — (1> — 1) = 2, which
contradicts the already established result that ¢ is odd. Thus, 0,(2)|2 and
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r|3. As a matter of fact, this implies that » = 3 and ¢ = 5, yielding the
triple (2,5,3). It is immediate to verify that this triple satisfies all conditions
of the problem. Moreover, all solutions are given by cyclic permutations of
the components of this triple.

Problem 7.3.7. Find all primes p,q such that pq|2P + 29.

Solution. Note that (p, q) = (2,2), (2,3), (3, 2) satisfy this property and
let us show that there are no other such pairs. Assume, by contradiction,
that p # 2 and g # 2. Write p — 1 = 2'n, ¢ — 1 = 2¥m, where [, k are odd
positive integers. Because pg|2P 4 2%, using Fermat’s Little Theorem, we
obtain 0 = 2P + 27 = 2P + 2 (mod gq). It follows 2P~ = —1 (mod q). If we
denote = 2", then we have 22 = —1 (mod ¢), hence o(z) = 21 (since
22" =1 (mod ¢) and 22 # 1 (mod g)). It follows 21 = oq(z)]p(q) =
g—1=2"m,ie l+1<k.

In similar way we can prove that k+1 <l and we get [ < k—1<1[—2,
a contradiction. Therefore, it is necessary to have p = 2 or ¢ = 2. If, for
example, ¢ = 2, then p|2P +29 = 2P +22 0 = 2P +22 = 2+22 =6 (mod p),
and we get p € {2,3}.

Problem 7.3.8. Prove that for any positive integer n, 3" — 2" is not
divisible by n.

Solution. Assume by contradiction that n|3™ — 2™ for some positive
integer n. Let us denote by p the smallest prime divisor of n. Since n|3"—2",
it follows that p > 5. Consider a positive integer a such that 2a = 1
(mod p). From 3" = 2" (mod p) we obtain (3a)” = 1 (mod p). Let us
denote d = 0p(3a). It follows d|p — 1 and d|n. But d < p and d|n implies
d = 1, because the minimality of p. We get 3a = 1 (mod p) and 2a = 1
(mod p), i.e. a =0 (mod p), contradiction with 2a =1 (mod p).

Problem 7.3.9. Find all positive integers m,n such that n|l + m3" +
m23",

(Bulgarian IMO Team Selection Test)

Solution. From n|14+m?" +m?3" it follows n|m‘°’n+1 —1, hence d = o, (m)

divides 3"*!, i.e. d = 3% for some positive integer k. If k& < n, then d|3"

23" it follows n = 3.

implies n|m3" — 1. Combining with n|1 + m3" +m
If Kk > n+1, then d = 3" and d|p(n) implies d < n, impossible since

37*+1 > n. Therefore n = 3 and, consequently m =1 (mod 3).
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Problem 7.3.10. Let a,n > 2 be positive integers such that nla" ' — 1
and n does not divide any of the numbers a® — 1, where x < n — 1 and
x|n — 1. Prove that n is a prime number.

Solution. Denote d = op(a). Since nla"~! — 1 it follows dln — 1. If
d < n— 1, then we contradict the hypotheses that n does not divide a® — 1.
Hence d > n — 1 and consequently d =n — 1.

On the other hand, we have d|p(n), hence n—1|¢(n). Taking into account
that ¢(n) < n —1, we find p(n) = n — 1 and it follows that n must be a
prime number.

Problem 7.3.11. Find all prime numbers p,q for which the congruence
a*P = o  (mod 3pq)
holds for all integers c.
(1996 Romanian Mathematical Olympiad)

Solution. Without loss of generality assume p < ¢; the unique solution
will be (11,17), for which one may check the congruence using the Chinese
Remainder Theorem. We first have 274 = 2 (mod 3), which means p and
g are odd. In addition, if a is a primitive root mod p, then a3P9~1 =1
(mod p) implies that p — 1 divides 3pg — 1 as well as 3pg— 1 —3¢(p—1) =
3qg — 1, and conversely that ¢ — 1 divides 3p — 1. If p = ¢, we now deduce
p=q=3, but 427 =1 (mod 27), so this fails. Hence p < q.

Since p and ¢ are odd primes, ¢ > p+2,s0 (3p —1)/(¢ — 1) < 3. Since
this quantity is an integer, and it is clearly greater than 1, it must be 2.
That is, 2¢ = 3p + 1. On the other hand, p — 1 divides 3¢ — 1 = (9p+1)/2
as well as (9p+ 1) — (9p — 9) = 10. Hence p = 11, ¢ = 17.

Remark. An integer n such that a™ = a (mod n) for all integers a is
called a Carmichael number. Very recently W.R. Alford, A. Granville, C.
Pomerance [Annals Math., 1994, 703-722] proved that there are infinitely
many Carmichael numbers. Using the ideas outlined in this solution of the
above problem, one can show that n is a Carmichael number if and only
if it is of the form pyps...pk, with p; different prime numbers such that
pi—1ln—1foralli=1,2,... k.

18.4 Wilson’s Theorem

Problem 7.4.5. Let p be an odd prime. Prove that

p+1

12.32...(p—2)*=(~1)2 (mod p)
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and
22.42. (p—12%=(-1)"* (mod p).
Solution. Using Wilson’s Theorem, we have (p — 1)! = —1 (mod p),
hence

(1-3...(p—2))(2-4...(p—1))=-1 (mod p).
On the other hand,

l1=—-(p-1) (modp), 3=—-(p—3) (mod p),...,

p=2=—(p—(p—2) (modp),
therefore
1-3...p—2)=(-1)"= (2-4...(p— 1)) (mod p)
and the conclusion follows.
Problem 7.4.6. Show that there do not exist nonnegative integers k and
m such that k! + 48 = 48(k + 1)™.

(1996 Austrian-Polish Mathematics Competition)

Solution. Suppose such k,m exist. We must have 48|k!, so k > 7 = 6;
one checks that & = 6 does not yield a solution, so k > 7. In that case k!
is divisible by 32 and by 9, so that (k! + 48)/48 is relatively prime to 6, as
then is k + 1.

If k+1 is not prime, it has a prime divisor greater than 3, but this prime
divides k! and not k!4 48. Hence k + 1 is prime, and by Wilson’s Theorem
k! 4+ 1 is a multiple of k + 1. Since k! 4+ 48 is as well, we find k + 1 = 47,
and we need only check that 46!/48 + 1 is not a power of 47. We check that
46!/48 + 1 = 29 (mod 53) (by cancelling as many terms as possible in 46!
before multiplying), but that 47 has order 12 modulo 53 and that none of
its powers is congruent to 29 modulo 53.

Problem 7.4.7. For each positive integer n, find the greatest common
divisor of n! + 1 and (n+ 1)!.

(1996 Irish Mathematical Olympiad)

Solution. If n + 1 is composite, then each prime divisor of (n + 1)! is
a prime less than n, which also divides n! and so does not divide n! + 1.

Hence f(n) = 1. If n + 1 is prime, the same argument shows that f(n) is
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a power of n+ 1, and in fact n + 1|n! + 1 by Wilson’s Theorem. However,
(n+ 1)? does not divide (n + 1)!, and thus f(n) =n + 1.

Problem 7.4.8. Let p > 3 be a prime and let o be a permutation of
{1,2,...,p— 1}. Prove that there are i # j such that plic(i) — jo(j).

(1986 Romanian IMO Team Selection Test)

Solution. Assume by contradiction that p does not divide io(i) — jo(j)
foranyi,j =1,2,...,p—1,i # j. Then, the integers io(i),i = 1,2,...,p—1,
are all not divisible by p and give distinct residues modulo p. We have

p—1
H Hl— —1l=-1 (mod p).
i=1

p—1 p—1
On the other hand, H(w(z)) = H((p —1)N? =1 (mod p), a contra-
i=1 i=1

diction.
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Diophantine Equations

19.1 Linear Diophantine equations

Problem 8.1.4. Solve in integers the equation

@+ D7+ 1) +2(x —y)(1 — 2y) =41 + ay).

Solution. The equation is equivalent to
2,2 2 2 _
Yy —2zxy+ 1+ +y° —2zy+ 2z —y)(1 —zy) =4,

or
(zy —1)* + (x —y)* +2(x —y)(1 —zy) = 4.

Hence (1 — zy + 2 — y)? = 4 and, consequently, |(1 + 2)(1 — y)| = 2.
We have two cases:
I (1+z)(1—y)=2. Then
J1+z=21-y=1,s0z=1, y=0.
b)l+z=-21-y=-1,s0c=-3, y=2.
)l+z=11-y=2,s0x=0, y=—1.
dl+z=-1,1-y=-2,s0x=-2, y=3.
II. (1+2)(1 —y) = —2. Then
a)l+z=2,1-y=—-1,soz=1, y=2.

a
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b)l+z=-21-y=1,s0x=-3, y=0.

)l+z=11-y=-2,302=0, y=3.

dDl+z=-1,1-y=2,s0x=-2, y=—1.

Problem 8.1.5. Determine the side lengths of a right triangle if they are
integers and the product of the legs’ lengths equals three times the perime-
ter.

(1999 Romanian Mathematical Olympiad)
Solution. Let a, b, c be the lengths of triangle’s sides. We have
a? =b* +
and
bc =3(a+b+c).
Let P=a+ b+ c. Then bc = 3P and
b +c? = (b+c)* —2bc= (P —a)> -~ 6P = P>+ a® — 2aP — 6P.
It follows that
a? = P?+a% — 2aP — 6P,

SO
P =2a+6,

that is,
a=b+c—06.

We have then:
b2+ =b%+ ¢+ 2bc — 12b — 12¢ + 36
if and only if
bc —6b —6¢c+ 18 =0,
that is
(b—6)(c—6)=18.

Analyzing the ways in which 18 can be written as a product of integers,
we find the following solutions:

(a,b,c)€{(25,7,24), (25,24,7), (17,8,15), (17,15,8), (15,9, 12), (15,12, 9)}.

Problem 8.1.6. Let a,b and ¢ be positive integers, each two of them
being relatively prime. Show that 2abc — ab — bc — ca is the largest integer
which cannot be expressed in the form xbc+ yca + zab where x,y and z are

nonnegative integers.
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(24th TMO)

Solution. We will solve the problem in two steps.
First step. The number 2abc — ab — bec — ca cannot be expressed in the
required form. Assume contrary, that:

2abc — ab — bc — ca = xbc + yca + zab,
where x,y, z > 0. Then, one obtains the combination
2abc = be(x + 1) + ca(ly + 1) + ab(z + 1)

where z+1>0,y+1> 0, z+1 > 0. It leads to the divisibility a|bc(x 4+ 1).

Since a is relatively prime to b and ¢, a divides z + 1 and then a < z + 1.
Using similar arguments, b <y + 1 and ¢ < z+ 1. Thus, 2abc = be(x +1) +
ca(y+ 1) + ab(z + 1) > 3abe. This is a contradiction.

Second step. Any number N, N > 2abc — ab — bc — ca, can be expressed
in the form N = xzbc + yca + zab.

First, observe that 2abc —ab—bc—ca+1 > 0. It follows by the following
argument:

1 1 1 1
— (2abe—ab—be—cat1)=2— = —~— = ) T — >
abc( abc—ab—bc—ca+1) i c+abc > 175 3+abc >0

Going further, we have two situations. When N = 0 (mod abc), since
N = abeg, we may consider the combination N = (ab)cg + bc- 0+ ca - 0. It
is of required form, under notations © =y = 0 and z = ¢q.

Suppose that N # 0 (mod abc). Because ged(be, a) = 1, the congruence

zbc=N (mod a)
has a solution zg, 0 < xg < a. Similarly, the congruences
yca= N (mod b)

zab=N (mod c)

have solutions yg, 2o, respectively, 0 < yg < b, 0 < zg < c.
Let A = xpbc + yoca + zgab. Then we have:

A=xobc=N (moda), A=N (modb), A=N (modc).

Since a, b, ¢ are pairwise respectively prime, we obtain A = N (mod abc).
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The number A is a combination of required form. Since zg < a — 1,
Yo < b—1, and zp < ¢ — 1 it follows that A < 3abc — bc — ca — ab. Using
A = N (mod abc), we may write N = A + kabe. In this sum k > 0, since
N > 2abc — bc — ca — ab. Therefore we found for N, as it was required, the
expression

N = (z¢ + ka)be + yoca + zpab

where zg + ka > 0, yg > 0, 29 > 0.

Remark. One can prove that if a1, as,...,ar € Z are positive integers
such that ged(aq, . ..,ax) = 1, then any sufficiently large n is a linear com-
bination with nonnegative coefficients of a1,...,ar. It is not known the

smallest such n for k£ > 4. This is the famous problem of Frobenius.

19.2 Quadratic Diophantine equations
19.2.1 Pythagorean equations

Problem 8.2.2. Find all Pythagorean triangles whose areas are numer-
ically equal to their perimeters.
Solution. From (3), the side lengths of such a triangle are

kE(m? —n?), 2kmn, k(m*+n?).
The condition in the problem is equivalent to
E*mn(m?* — n?) = 2km(m + n),
which reduces to
kn(m —n) = 2.

A simple case analysis shows that the only possible triples (k, m,n) are
(2,2,1), (1,3,2), (1,3,1), yielding the Pythagorean triangles 6 — 8 — 10 and
5—12—-13.

Problem 8.2.3. Prove that for every positive integer n there is a positive

integer k such that k appears in exactly n nontrivial Pythagorean triples.
(American Mathematical Monthly)

Solution. We will prove by induction that 2"*! appears in exactly n
Pythagorean triples. The base case n = 1 holds for (3,22,5) is the only
such triple. Assume that (zx, yk, 2 ), where z = u% —U,%, Y = 2URVk, 2 =
ui+v?, k=1,...,n are the n triples containing 2"**. Then (2zy, 2y, 2z1),
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k =1,...,n are n non-primitive Pythagorean triples containing 2”12 and
(22n+2 1, 2n%2 227+2 4 1) is the only such primitive triple.

No other triple with this property exists. Indeed, if (u? —v?, 2uv, u? +v?)
were a triple containing 2”12, then we would have the following cases:

i) u? 4+ v? = 2"*2, Simplifying by the greatest possible power of 2 we
get a® + b> = 2% where a and b ate not both even. Then the left-hand side
is congruent to 1 or 2 (mod 4), while the right-hand side is 0 (mod 4), a
contradiction.

ii) 2uv = 27*2. We simplify again by the greatest power of 2 and obtain
ab = 2°, where a > b are not both even and s > 1. It follows that a = 2% and
b = 1, yielding the triple generated by (22° —1,2°+1 225 4 1) multiplied by
a power of 2, that is clearly among the non-primitive triples (2xy, 2yk, 22x ).

2 _9? = 2"*2, Simplifying again by the greatest power of 2 we arrive

iii) u
at a2 — b2 = 2t where a and b are not both even and ¢ > 3. If one of a and
b are even, then the left-hand side is odd, while the right-hand side is even,
a contradiction. If a and b are both odd, then a — b =2 and a + b = 2!~ 1,
yielding a — 2!=2 and b = 2¢=2 — 1. Again, we get a triple generated by
(28,2(2%4 — 1),2(2%~* + 1)) multiplied by a power of 2, which is clearly

already among a non-primitive triple (2, 2y, 22k).

19.2.2 Pell’s equation

Problem 8.2.6. Let p be a prime number congruent to 3 modulo 4.

Consider the equation
(p+2)a® = (p+1)y* +pr+(p+2)y=1.

Prove that this equation has infinitely many solutions in positive integers,
and show that if (z,y) = (zo,y0) s a solution of the equation in positive

integers, then plxg.
(2001 Bulgarian Mathematical Olympiad)

Solution. We show first that p|z. Substituting y = z + 1 and rewriting,

we obtain
2= (z—2)((p+1)(z +2) +p).

Let ¢ = ged(z—z, (p+1)(2+2x)+p). Then g|x, therefore ¢g|z, and therefore
g|p- On the other hand, ¢ # 1, because otherwise both factors on the right
hand side must be perfect squares, yet (p+1)(z+z)+p =3 (mod 4). Thus
q = p and p|z as desired.
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Now, write x = pr1 and z = pz; to obtain
2t = (z1 —2)((p+ V(21 +21) + 1),

By what we showed above, the two terms on the right are coprime and

must be perfect squares. Therefore, for some a, b we have
2 —x1=a?, (p+1)(zn+z1)+1=0% x1=ab.
The above equality implies
b = (p+1)((a® + 2ab) + 1),

i.e.
(p+2)b> — (p+1)(a+b)> =1.

Vice versa, given a and b satisfying the last equation, there exists a
unique pair (x1,¥1) satisfying the equation above, and hence a unique pair
(z,y) satisfying the original equation.

Thus, we reduced the original equation to a ”Pell-type” equation. To get
some solutions, look at the odd powers of /p + 2++/p + 1. It follows easily

that
(Vp+2+Vp+ 1) =mp/p+2+n/p+1

for some positive integers my, ng. Then
(Vp+2=vVp+ D)™ = /p+2 - /p+1,
and, multiplying the left and right sides gives
(p+2)mi — (p+ )ng = 1.

Clearly, ny > my, so setting by, = myg, ar = nx — my gives a solution for
(a,b). Finally, it is easy to see that the sequences {my}, {ni} are strictly
increasing, so we obtain infinitely many solutions this way.

Problem 8.2.7. Determine all integers a for which the equation

2 4ary+yi=1
has infinitely many distinct integer solutions (x,y).

(1995 Irish Mathematical Olympiad)
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Solution. The equation has infinitely many solutions if and only if a? >
4. Rewrite the given equation in the form

(22 4+ ay)? — (a® — 4)y* = 4.

If a> < 4, the real solutions to this equation form an ellipse and so
only finitely integer solutions occur. If ¢ = 42, there are infinitely many
solutions, since the left side factors as (z £ y)2. If a® > 4, then a? — 4 is
not a perfect square and so the Pell’s equation u? — (a? — 4)v? = 1 has
infinitely many solutions. But setting * = v — av, y = 2v gives infinitely
many solutions of the given equation.

Problem 8.2.8. Prove that the equation

23 4+ 3 + 22+ 13 = 1999
has infinitely many integral solutions.
(1999 Bulgarian Mathematical Olympiad)

Solution. Observe that (m—n)?+(m+n)? = 2m?+6mn?. Now suppose
we want a general solution of the form

d d
(‘T,y72,t): (a_b7a+b7g_§,g+§>

for integers a,b and odd integers c,d. One simple solution to the given
equation is (x,y, z,t) = (10,10, —1,0), so we try setting a = 10 and ¢ = —1.
Then

1 d 1 d
=(10-10,1 S
(z,y,2,1) (0 b,10+b,—5 — 2. 2+2)

is a solution exactly when

1+ 3d?
4

The second equation is a Pell’s equation with solution (di,b1) = (9,1).

(2000 4 60b?) — =1999, ie. d*—80p*=1.

We can generate infinitely many more solutions by setting
(dn+1,bn+1) = (9d,, + 800y, 96, + dy,) for n=1,2,3,...
This can be proven by induction, and it follows from a general recursion

(Prt1sGnt1) = (P10 + €100 D, 160 + 10n)

for generating solutions to p? — Dg? = 1 given a nontrivial solution (p1, q1).
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A quick check also shows that each d,, is odd. Thus because there are
infinitely many solutions (b, d,) to the Pell’s equation (and with each d,
odd), there are infinitely many integral solutions

1 d, 1 d,
nsYny 2nstn) = 10 — nal nyT 5 T o Y
(Tn, Yn Zny tn) (O bn,10+b 57 2+ 2)

to the original equation.

19.2.3 Other quadratic equations

Problem 8.2.11. Prove that the equation
Py 2243ty +2)+5=0
has no solutions in rational numbers.
(1997 Bulgarian Mathematical Olympiad)

Solution. Let ©u = 2z + 3, v = 2y + 3, w = 2z + 3. Then the given

equation is equivalent to
w? + o +uw?=T.
It is equivalent to ask that the equation
2?4+ y? + 27 = Tw?

has no nonzero solutions in integers; assume on the contrary that (x,y, z, w)
is a nonzero solution with |w| + |z| 4 |y| + |z| minimal. Modulo 4, we have
x2 4+ 12 + 22 = Tw?, but every perfect square is congruent to 0 or 1 modulo
4. Thus we must have z,y, z,w even, and (x/2,y/2,2/2,w/2) is a smaller
solution, contradiction.

Remark. Try to prove the following theorem of Davenport and Cassels:
for n € Z, the equation x® + y? + 22 = n has rational solutions if and only
if it has integer solutions. There is a beautiful elementary geometric proof.
Try to find it!

Problem 8.2.12. Find all integers x,y, z such that 52% — 14y? = 1122,

(2001 Hungarian Mathematical Olympiad)

Solution. The only solution is (0,0,0).
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Assume, for sake of contradiction, that there is a triple of integers
(z,y,2) # (0,0,0) satisfying the given equation, and let (x,y,z) =
(20, Y0, 20) be a nonzero solution that minimizes |z + y + z| > 0.

Because 5z3 — 14y2 = 1122, we have

—2x3 =422 (mod 7),

or 22 = —222 =522 (mod 7). Therefore, we have zo = 0 (mod 7), because

otherwise we have
5= (025 ")? (mod 7),

which is impossible because 5 is not a quadratic residue modulo 7. (The
squares modulo 7 are 0, 1, 2 and 4.)
It follows that 2o and zg are divisible by 7, so that 14y% = 52% — 1122 is

divisible by 49. Therefore, 7|yo. Then (%7 y70, 2—70) is also a solution, but
x—; + Yo + Z—O’ < |xo+yo+ 20|, contradicting the minimality of (xq, yo, 20)-

Therefore, our original assumption was false, and the only integer solu-
tion is (0,0,0).
Problem 8.2.13. Let n be a nonnegative integer. Find the nonnegative

integers a, b, c,d such that

A+ +E+d2=7-4"

(2001 Romanian JBMO Team Selection Test)

Solution. For n = 0, we have 22 + 12 4+ 12 + 12 = 7, hence (a,b,¢,d) =
(2,1,1,1) and all permutations. If n. > 1, then a?+b?+c?+d? = 0 (mod 4),
hence the numbers have the same parity. We analyze two cases.

a) The numbers a, b, ¢, d are odd. We write a = 2a’ + 1, etc. We obtain:

4a/(a/ + 1)+ 40 (0 + 1) +4 (¢ +1) +4d'(d +1) =4(7-4"1 - 1).

The left hand side of the equality is divisible by 8, hence 7-4"~! —1 must
be even. This happens only for n = 1. We obtain a? + b% + ¢® + d? = 28,
with the solutions (3,3,3,1) and (1,1,1,5).

b) The number a, b, ¢, d are even. Write a = 2a’, etc. We obtain

A+ 0P+ d? =740

so we proceed recursively.
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Finally, we obtain the solutions (271,27 27 27) (3.27,3.27 3.2" 2"),
(2,27, 2" 5-2™) n € N, and the respective permutations.
Problem 8.2.14. Prove that the equation

22 4 y? 4 22 (2 = 22004,
where 0 < x <y < x <t, has exactly two solutions in the set of integers.
(2004 Romanian Mathematical Olympiad)

Solution. The solutions are (0, 0, 0,21092) and (21001 21001 91001 91001

In order to prove the statement, let (z,v, z,t) be a solution. Observe that
for odd @ we have a = 4n + 1, and a? gives the remainder 1 when divided
by 8. Thus the equation has no solution with an odd component.

We thus must have © = 2x1, y = 21, 2 = 221, t = 2t1, where 0 < z1 <
y1 < 21 < t; are integers and 2?2 +y?+ 27 +2 = 22092, By the same argument
x1 = 2x9, Y1 = 22, 21 = 222, t1 = 2t3, where 0 < x5 < yo < 29 < ty are
integers and x3 + y3 + 23 + t3 = 2290,

Recursively, = 22001q, 3 = 22001, — 22001, ¢ — 920027 where 0 <
a < b < c<d are integers and a? + b2 + 2 + d% = 4. This relation simply
implies the conclusion.

Problem 8.2.15. Let n be a positive integer. Prove that the equation
1 1
rT+y+-—+-—=3n
r oy

does not have solutions in positive rational numbers.
. a c ) . .
Solution. Suppose © = —, y = — satisfies the given equation, where

d
(a,b) = (¢,d) = 1. Clearing denominators,

(a® +b*)ed + (¢* + d*)ab = 3nabed.

Thus, ab|(a? + b?)cd and cd|(c? + d?)ab. Now (a,b) = 1 implies (a,a® +
b?) = (a,b?) = 1, so ab|cd; likewise, cd|ab, and together these give ab = cd.
Thus,

a® +b? + 2 + d* = 3nab.

Now each square on the left is congruent to either 0 or 1 modulo 3.
Hence, either all terms are divisible by 3 or exactly one is. The first case
is impossible by the assumption (a,b) = (¢,d) = 1, and the second is

impossible because ab = cd.
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19.3 Nonstandard Diophantine equations
19.3.1 Cubic equations

Problem 8.3.5. Find all triples (x,y, z) of natural numbers such that y

is a prime number, y and 3 do not divide z, and x> — > = 22.

(1999 Bulgarian Mathematical Olympiad)

Solution. We rewrite the equation in the form

(z —y)(@® + 2y +y°) = 22

Any common divisor of z —y and z? + 2y + y? also divides both 22 and
(2% + 2y + y?) — (z + 2y)(z — y) = 3y?. Because 22 and 3y? are relatively
prime by assumption, z — y and z? + zy + y? must be relatively prime as
well. Therefore, both « — y and z? + zy + y> are perfect squares.

Writing a = /z — y, we have

?+ay+yt=(®+y)?+(@®+yy+y’ =a* +3d’y + 3y

and
4(2® + zy + y?) = (26 + 3y)* + 3y°.
Writing m = 2+/22 4+ 2y + 32 and n = 2a? + 3y, we have
m? = n? 4 3y>
or
(m = n)(m + 1) = 397,

so (m—mn,m+n) = (1,3y?), (y,3y), or (3,4?).
In the first case, 2n = 3y? — 1 and 4a? = 2n — 6y = 3y? — 6y — 1. Hence,

2 =2 (mod 3), which is impossible.

a
In the second case, n = y < 2a? + 3y = n, a contradiction.
In the third case, we have 4a® = 2n — 6y = 3> — 6y — 3 < (y — 3)°.

When y > 10 we have y? — 6y — 3 > (y — 4)2. Hence, we must actually have

Vy?—6y—3

2
when y =7,a =1,z =y +a’? =8, and z = 13. This yields the unique
solution (z,y, z) = (8,7, 13).
Problem 8.3.6. Find all the positive integers a, b, c such that

y=2,3,5, or 7. In this case we have a = , which is real only

a® 4+ b3 4 3 = 2001.
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(2001 Junior Balkan Mathematical Olympiad)

Solution. Assume without loss of generality that a < b < c.

It is obvious that 1% + 103 + 10% = 2001. We prove that (1, 10,10) is the
only solution of the equation, except for its permutations.

We start proving a useful

Lemma. Suppose n is an integer. The remainder of n® when divided by
9is0,1 or —1.

Indeed, if n = 3k, then 9|n? and if n = 3k £ 1, then n® = 27k3 £ 27kZk +
1=M9+£1

Since 2001 = 9- 222 + 3 = M9 + 3, then a® + b> + ¢ = 2001 implies
ad=M9+1,03 = M9+ 1 and ¢® = M9+ 1, hence a,b, c are numbers of
the form M3 + 1. We search for a, b, ¢ in the set {1,4,7,10,13,...}.

If ¢ > 13 then ¢ > 2197 > 2001 = a3 + b® + ¢3, which is false. If
¢ < 7 then 2001 = a® + b% + ¢3 < 3 - 343 and again is false. Hence ¢ = 10
and consequently a® + b3 = 1001. If b < ¢ = 10 then a < b < 7 and
1001 = a® + 6% < 2-73 = 2343, a contradiction. Thus b = 10 and a = 1.

Therefore (a,b) € {(1,10,10), (10, 1,10), (10,10,1)}.

Problem 8.3.7. Determine all ordered pairs (m,n) of positive integers

such that
n3+1
mn —1

18 an integer.
(351" IMO)

nd+1

Solution. Let 1= k, k a positive integer.

mn —
From n3 + 1 = k(mn — 1), one obtains k + 1 = n(km — n?). Thus, n

divides k£ + 1 and by noting km — n? = ¢ one has k = ng — 1. Using this
form of k£ we have

n*+1=(ng—1)(mn—1) & n(mg—n)=m+q.
Since m+¢q > 0 it follows that x = mg—mn > 0. Thus we have the system:
{ m=m-+q
r+n=mq
By adding these equations we obtain:

m+mg=z+n+m+qg & zn+mg—r—n—-m-—-q+2=2 &
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(z—Dn-1+m-1)(¢—1)=2.
The equation

(z—Dn-1)+m—-1)(g—1)=2

has only finite number of positive integer solutions. These are listed bellow:

)

)

)

Jn=1,m—-1=1,¢-1=2 = n=1 m=2.
5Sm=1,z-1=2,n—-1=1= m=1, n=2.

ym=1,z—-1=1,n—-1=2 = m=1, n=3.

)

)

)

Thus, we have obtained the following nine pairs (m, n): (5,3), (3,5), (5,2),
(2,5), (3,1), (1,3), (2,1), (1,2), (2,2). All pairs are solutions of the problem.

19.3.2 High-order polynomial equations

Problem 8.3.12. Prove that there are no positive integers x and y such
that

2 +y°+1=(x+2)°+ (y—3)°.

Solution. Notice that 25 = z (mod 10), hence z+y+1 = (z+2)+(y—3)
(mod 10), impossible.

Problem 8.3.13. Prove that the equation y?> = x® — 4 has no integer
solutions.

(1998 Balkan Mathematical Olympiad)
Solution. We consider the equation mod 11. Since
(°)? =2""=00r1 (mod 11)

for all #, we have 2° = —1,0, or 1 (mod 11), so the right-hand side is either
6, 7, or 8 modulo 11. However, all squares are 0, 1, 3, 4, 5, or 9 modulo 11,
so the equation y? = 2° — 4 has no integer solutions.
Problem 8.3.14. Let m,n > 1 be integer numbers. Solve in positive
integers the equation
"+ oyt =2"
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(2003 Romanian Mathematical Olympiad)

Solution. Let d = ged(z,y) and z = da, y = db, where (a,b) = 1. it is
easy to see that a and b are both odd numbers and a™ 4 b = 2*_ for some
integer k.

Suppose that n is even. As a2 = b2 =1 (mod 8), we have also a™ = b" =
1 (mod 8). As 2¥ = a"+b" =2 (mod 8), we conclude t = 1 and u = v = 1,
thus 2 = y = d. The equation becomes 2™ = 2™~ ! and it has an integer
solution if and only if n is a divisor of m —1 and x =y = 27

Consider the case when n is odd. From the decomposition
a"+ b =(a+b)(a"t —a" b+ a" T — - 0,
we easily get a +b = 2F = a™ 4 b"™. In this case a = b = 1, and the proof

goes on the line of the previous case.
m—

To conclude, the given equations have solutions if and only if is
an integer and in this case x = y = 27,

Problem 8.3.15. For a given positive integer m, find all pairs (n,z,y) of
positive integers such that m,n are relatively prime and (z>+y?)™ = (zy)",

where n, x,y can be represented in terms of m.
(1995 Korean Mathematical Olympiad)
Solution. If (n,z,y) is a solution, then the AM-GM inequality yields
(zy)" = (2 +y*)™ = 2ay)™ > (ay)™,

son > m. Let p be a common prime divisor of x and y and let p®|z, p®|y.
Then p(et0)7||(zy)™ = (2 4+ y>)™. Suppose b > a. Since p**||z2, p**||y?, we
see that p2?||2? +y? and p?*™||(2? +y?)™. Thus 2am = (a+b)n > 2an and
m > n, a contradiction. Likewise, a > b produces a contradiction, so we
must have a = b and x = y. This quickly leads to z = 2¢ for some integer ¢
and all solutions are of the form

for nonnegative integers ¢.
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19.3.3 Exponential Diophantine equations

Problem 8.3.19. Determine all triples (x,k,n) of positive integers such
that
3k —1=2a"

(1999 Italian Mathematical Olympiad)

Solution. All triples of the form (3* — 1, k, 1) for positive integers k, and
(2,2,3).

The solutions when n = 1 are obvious. Now, n cannot be even because
then 3 could not divide 3¥ = (z2)2 + 1 (because no square is congruent to
2 modulo 3). Also, we must have = # 1.

Assume that n > 1is odd and z > 2. Then 3*¥ = (z 4+ 1) ) (—z),

=0
n—1
implying that both x 4+ 1 and z:(—ac)Z are powers of 3. Because x + 1 <
i=0
n—1
x —x+1<z ZvvemusthaveozZ(—sc)z—n(modaH—l),so
=0

that z + 1|n. Spec1ﬁcally, this means that 3|n.

Writing 2/ = 2%, we have 3% = 2/® +1 = (¢/ + 1)(2/* — 2/ +1). As before
2’ 4 1 must equal some power of 3, say 3*. Then 3% = (3t —1)3 +1 = 33¢
321 1 3t+1 which is strictly between 33~1 and 33 for ¢t > 1. Therefore we
must have t = 1, 2/ = 2, and k = 2, giving the solution (z, k,n) = (2,2, 3).

Problem 8.3.20. Find all pairs of nonnegative integers x and y which

satisfy the equation

pr—yP =1
where p is a given odd prime.

(1995 Czech-Slovak Match)

Solution. If (z,y) is a solution, then
PrEyP 1= (T -y )

and so y + 1 = p” for some n. If n = 0, then * = y = 0 and p may be
arbitrary. Otherwise,
!
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=" —p.p"® 1)+(2>p (p 2)+..._(p_2)p2 +p-p".

Since p is a prime, all of the binomial coefficients are divisible by p. Hence
all terms are divisible by p™*!, and all but the last by p™t2. Therefore the
highest power of p dividing the right side is p"*! and so x = n+1. We also

(2 n(p— p n(p— p n
Ozp p_pp (p 1)+(2>p (P 2)+._(p_2>p2 .

For p = 3 this reads 0 = 33" — 3 - 32" which only occurs for n = 1,

have

yielding x = y = 2. For p > 5, the coefficient ( b 2) is not divisible by
p—
2

p?, so every term but the last on the right side is divisible by p?*t2

, while
the last term is not. Since the terms sum to 0, this is impossible.
Hence the only solutions are z = y = 0 for all p and x = y = 2 for p = 3.
Problem 8.3.21. Let x,y, z be integers with z > 1. Show that

(+1)%+ (x+2)% 4+ (2 +99)° # y~.

(1998 Hungarian Mathematical Olympiad)

Solution. We prove the statement by contradiction. Suppose, on the

contrary, that there are integers x,y, z such that z > 1, and
(@+1)°+ (@ +2°+- -+ (2 +99)” = y°.
We notice that
=@+ 12+ (@+2)?>+ -+ (x+99)

=9922 +2(1+24 -+ 99)x + (12 + 22 +--- 4 99?)
2:99-100  99-100-199

2 6
= 33(32% + 300z + 50 - 199),

= 992% +

which implies that 3|y. Since z > 2, 32|y, but 32 does not divide 33(322 +
300z +50-199), contradiction. So our assumption in fact must be false and
the original statement in the problem is correct.
Problem 8.3.22. Determine all solutions (x,y,z) of positive integers
such that
(x4 1) 1= (2 +2)"
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(1999 Taiwanese Mathematical Olympiad)

Solution. Let a=xz+ 1, b=y +1,c= 2+ 1. Then a,b,c > 2 and

((a+1)—1)°+1=(a+ 1)

Taking the equations mod (a + 1) yields (—1)* +1 =0, so b is odd.
Taking the second equation mod (a + 1)? after applying the binomial
expansion yields

(l;) (a+1) (-1 1+ (-1)’+1=0 (mod (a+1)?)

so (a+1)|b and a is even. On the other hand, taking the first equation mod
a? after applying the binomial expansion yields

1= (i)a +1 (mod a?),
so ¢ is divisible by a and is even as well. Write a = 2a; and ¢ = 2¢;. Then
2al =a’=(a+1)°—1=((a+ 1) —1)((a+ 1) +1).

It follows that ged((a + 1) — 1, (a+ 1) + 1) = 2. Therefore, using the
fact that 2a; is a divisor of (a + 1)°* — 1, we may conclude that

(a+1) —1=2d}

(a+1) +1 =21

We must have 207! > 244 = a; = 1. Then these equations give ¢; = 1
and b = 3. Therefore the only solution is (z,vy, 2) = (1,2, 1).
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20

Some special problems in number
theory

20.1 Quadratic residues. Legendre’s symbol

Problem 9.1.7. Let f,g: ZT — ZT functions with the properties:

i) g is surjective;

ii) 2f%(n) = n? + ¢g(n) for all positive integers n.

If, moreover, |f(n) —n| < 2004y/n for all n, prove that f has infinitely

many fized points.
(2005 Moldavian IMO Team Selection Test)

Solution. Let p, be the sequence of prime numbers of the form 8% + 3
(the fact that there are infinitely many such numbers is a trivial conse-
quence of Dirichlet’s theorem, but we invite the reader to find an elemen-

tary proof). It is obvious that for all n we have

Using the condition i) we can find x,, such that g(x,) = p, for all n. It

follows that 2f2(x,) = 22 + p2, which can be rewritten as 2f2(x,) = 12

2
(mod p,,). Because <p_ = —1, the last congruence shows that p,|x,

n
and py,|f(x,). Thus there exist sequences of positive integers a,, b, such
that x, = appn, f(xn) = bpp, for all n. Clearly, ii) implies the relation
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202 = a2 + 1. Finally, using the property |f(n) — n| < 2004y/n we infer
that

2004>’f(mn)_1’: b_n_1 7
anp
that is
/a2
lim Y~ = /2.

The last relation immediately 1mphes that lim a,, = 1. Therefore, start-
n—oo
ing from a certain rank, we have a, = 1 = b, that is f(pn) = pn. The
conclusion now follows.

Problem 9.1.8. Suppose that the positive integer a is not a perfect
a
square. Then | — | = —1 for infinitely many primes p.
p
Solution. One may assume that a is square-free. Let us write a =
2°q1q2 - . - qn, where ¢; are different odd primes and e € {0,1}. Let us as-
sume first that n > 1 and consider some odd distinct primes r1, ..., 7 each
of them different from ¢y, ..., q,. We will show that there exists a prime p,

a

different from rq,...,rg, such that —) = —1. Let s be a non quadratic
p

residue modulo g,,.

Using the Chinese Remainder Theorem, we can find a positive integer b

such that
b=1 (modmr;), 1<i<k

b=1 (mod 8),
b=q;, 1<i<n-1
b=s (mod g,)
Now, write b = p;...p, with p; odd primes, not necessarily distinct.
Using the quadratic reciprocity law, it follows immediately that

() = 0™ o=
and
() = TIe0™ = (2) =0 (1) = (7)

for all i € {1,2,...,n}. Hence

() - |T(2)| T (2)
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G -G -6

a
Thus, there exists 7 € {1,2,...,m} such that { — ] = —1. Because b=1
bi
(mod 1), 1 <i < k we also have p; € {1,2,...}\{r1,...,7} and the claim
is proved.
The only remaining case is a = 2. But this one is very simple, since it
suffices to use Dirichlet’s theorem to find infinitely many primes p such
21
that b is odd.

Problem 9.1.9. Suppose that ay,as,...,a2004 are nonnegative integers

such that al + a3 + - - + abypy 5 a perfect square for all positive integers

n. What is the minimal number of such integers that must equal 07
(2004 Mathlinks Contest)

Solution. Suppose that a1, aq, ..., ax are positive integers such that af +
ay +---+ay is a perfect square for all n. We will show that k is a perfect

square. In order to prove this, we will use the above result and show that

k
(—) = 1 for all sufficiently large prime p. This is not a difficult task.
p

Indeed, consider a prime p, greater than any prime divisor of ajas ... ag.

Using Fermat’s little theorem, ' + a5 " + --- + a¥~' = & (mod p),

and since ' +abt + oo 4 aﬁ_l is a perfect square, it follows that

k
(—) = 1. Thus k is a perfect square. And now the problem becomes
p
trivial, since we must find the greatest perfect square smaller than 2004.
A quick computation shows that this is 442 = 1936 and so the desired

minimal number is 68.
Problem 9.1.10. Find all positive integers n such that 2™ — 1|3™ — 1

(American Mathematical Monthly)

Solution. We will prove that n = 1 is the only solution to the problem.
Suppose that n > 1 is a solution. Then 2" — 1 cannot be a multiple of
3, hence n is odd. Therefore, 2" = 8 (mod 12). Because any odd prime
different from 3 is of one of the forms 12k £+ 1, 12k £ 5 and since 2" —
1 =7 (mod 12), it follows that 2™ — 1 has at least a prime divisor of the

form 12k + 5, call it p. Obviously, we must have (§> = 1 and using the
p

quadratic reciprocity law, we finally obtain (g) = (—l)prl. On the other
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+2 _
hand (g) =\5)= —(£1). Consequently, —(+1) = (—1)1071 = =+1,

which is the desired contradiction. Therefore the only solution is n = 1.
Problem 9.1.11. Find the smallest prime factor of 1227 + 1.
Solution. Let p be this prime number. Because p|12216 — 1, we find that

0,(12)]2'6. We find that 0,(12) = 2'6 and so 2'®|p—1. Therefore p > 1+216.

But it is well-known that 216 + 1 is a prime (and if you do not believe, you

can check; it is not that difficult). So, we might try to see if this number

divides 122"° + 1. Let ¢ = 216 + 1. Then

1227 41=291.3% 4+ 1=3"% +1 (mod q).

3
It remains to see whether (—) = —1. The answer is positive (use the
q

quadratic reciprocity law), so indeed 3% +1=0 (mod 2) and 26 + 1 is
the smallest prime factor of the number 122" + 1.

20.2 Special numbers

20.2.1 Fermat’s numbers

Problem 9.2.4. Find all positive integers n such that 2™ —1 is a multiple

2" —1
of 3 and is a divisor of 4m? + 1 for some integer m.

(1999 Korean Mathematical Olympiad)

Solution. The answer is all n = 2* where k =1,2,...

First observe that 2 = —1 (mod 3). Hence 3|2 — 1 if and only if n is
even.

Suppose, by way of contradiction, that [ > 3 is a positive odd divisor of
n. Then 2! — 1 is not divisible by 3 but it is a divisor of 2" — 1, so it is a
divisor of 4m? + 1 as well. On the other hand, 2! — 1 has a prime divisor
p of the form 4r + 3. Then (2m)? = —1 (mod 4r + 3), but we have that a
square cannot be congruent to —1 modulo a prime of the form 4r + 3 (see
also Problem 1 in Section 7.1).

Therefore, n is indeed of the form 2% for k > 1. For such n, we have

2" —1
3

=22 + DR+ +1)... 2% +1).

The factors on the right side are all relatively prime since they are Fermat

numbers. Therefore by the Chinese Remainder Theorem, there is a positive
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integer ¢ simultaneously satisfying

c=92" (mod 2214—1) foralli=1,2,....k—1

2" —1
and ¢ = 0 (mod 2). Putting ¢ = 2m, 4m? + 1 is a multiple of g v 88

desired.
Problem 9.2.5. Prove that the greatest prime factor of fn, n > 2, is
greater than 2"+ 2(n +1).

(2005 Chinese IMO Team Selection Test)

Solution. From Problem 9.2.3 we can write

S

fu =TI+ 272, 1)

i=1
where p; = 1 + 2""2p; are distinct primes and k; > 1. Taking relation (1)
modulo 4"12 it follows

0= Z kir;  (mod 2"12),
i=1

hence .
Z ]ﬂﬁ‘i 2 2n+2.
i=1
From (1) it is clear that

fn > (1 + 2n+2)k1+"'+ks’

hence

lg(1 +2%")
by 4ot k< 2 )
L T N TR

It follows
27+2 < [ max ik < [ max r; M
— \isiss) &7~ i Y ) 1g(1 +2n+2)’
=
Assume that <max) < n. Applying the last inequality we get

1<i<s

ognt+2 < lg(1 +2%") n]g(l +22")
— lg(1427+2) (n+2)lg2’

ie.
2 n
DEZ w2 < log,(1+2%"),
n

hence 22" <1+ 22n, a contradiction. Therefore lrga<x r; > n—+ 1, and
<i<s

;> 22 (n + 1).
> ey
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20.2.2 Mersenne’s numbers

Problem 9.2.7. Let P* denote all the odd primes less than 10000, and
suppose p € P*. For each subset S = {p1,pa,...,pr} of P*, with k > 2 and
not including p, there exists a ¢ € P*\ S such that

(+Dlp1+1)(p2+1) ... (pr +1).
Find all such possible values of p.
(1999 Taiwanese Mathematical Olympiad)

Solution. Direct calculation shows that the set T" of Mersenne primes
less that 10000 is

{Ms, M3, M5, M7, Mys} = {3,7,31,127,8191}.

211 — 1 is not prime, it equals 23 -89. We claim this is the set of all possible
values of p.

If some prime p is not in 7', then look at the set S = T'. Then there must
be some prime ¢ € S less than 10000 such that

(¢ + 1)[(Ma + 1)(M; + 1)(Ms + 1)(M7 + 1)(Myz + 1) = 2%,

Thus, g + 1 is a power of 2 and g is a Mersenne prime less than 10000,
and therefore ¢ € T = 5, a contradiction.

On the other hand, suppose p is in T. Suppose we have a set S =
{p1,p2,--.,pk} € P* not including p, with & > 2 and p1 < p2 < -++ <
pr- Suppose, by way of contradiction, that for all ¢ € P* such that
(¢g+D|p1+1)...(px + 1), we have g € S. Then

4|(p1 + 1)(])2 + 1) = MyeS

8|(My+1)(pa+1) = Mze S

32|(My+ 1)(Ms +1) = Ms€ S

128|(Ma + 1)(Ms +1) = My €S
8102|(Ms + 1)(Ms + 1)(My +1) = M3 € S.

Then p, a Mersenne prime under 10000, must be in S, a contradiction.
Therefore there is some prime ¢ < 10000 not in S with ¢+1|(p1+1) ... (pr+
1), as desired. This completes the proof.
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20.2.3 Perfect numbers

Problem 9.2.9. Prove that if n is an even perfect number, then 8n + 1

is a perfect square.
m(m + 1)

Solution. From Problem 1, we have n = 5

for some positive

integer m, hence
Sn+1=4m(m+1)+1=(2m+1)>

Problem 9.2.10. Show that if k is an odd positive integer, then 2= Mj,
can be written as the sum of the cubes of the first 2"7" odd positive integers.
In particular, any perfect number has this property.

Solution. Standard summation formulas verify that

n

> @2i—1)° =n’(2n® - 1).
i=1
With n = 2°2", the right-hand side becomes 28~1(2F—1), that is 28~ 1M},

and we are done.

20.3 Sequences of integers

20.3.1 Fibonacci and Lucas sequences

Problem 9.3.5. Determine the mazimum value of m? + n?, where m

and n are integers satisfying 1 < m,n < 1981 and (n? —mn —m?)? = 1.
(224 IMO)

Solution. Let S be the set of pairs (n, m) of positive integers satisfying

the equation
(2 — 2y — 2 = 1. M)

If n = m, then n = m = 1. Hence (1,1) € S. It is clear that (1,0) and
(0,1) are also solutions to the equation (1).

We will consider solutions (n,m) with distinct components. Using Fer-
mat’s method of infinite descent we obtain the following important result
on the set S.

Lemma. If (n,m) is a positive solution to the equation (1) and n # m,
then n >m >mn—m and (m,n —m) is also a solution to (1).

2

Proof. From n? — nm — m? = +1, we obtain

n(n —m)=m?+1>0.
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2

Thus, n > m. Also from n? — nm — m? = 1, we obtain

2

m? —m(n —m) — (n —m)?

=m2+mn—n2::|:1.

Apply first part to solution (m,n —m) and obtain m > n — m.

From the Lemma we deduce that any pair (n,m) € S gives rise to a
pair (m,n —m) € M, which gives rise to a pair (a 4+ b,a) € M. In this
way by descending method (n,m) — (m,n —m) or by ascending method
(a,b) — (a+b,a), we obtain new solutions of the equation. The ascending
and descending methods are reverse to one another.

By applying the descending method to a pair (n, m) € S we can have only
finitely many steps, because n —m < m. Hence, in a finite number of steps
we obtain a pair with n = m, that is the pair (1,1). Thus, all solutions
(n,m) € S are obtained from the pair (1,0) by applying the ascending
method:

(1,0) — (1,1) — (2,1) — (3,2) — (5,3) — ...

The components of all such pairs are Fibonacci numbers F,,. In this way
the ascending transformation is exactly the following:

(ananl) - (FnJrlaFn)'

Thus, to obtain the solution (n,m) with maximum value of n? 4+ m? we

consider the members of the Fibonacci sequence, not exceeding 1981:
0,1,1,2,3,5,8,13,21, 34, 55,89, 144, 233, 377,610, 987, 1597.

So, the required maximum is 9872 + 15972.

Remark. Fibonacci numbers F;, have the property:
F2,, — F,Fo41 — F2 =+£1, foralln > 0.

To prove it for n = 0 or n = 1 is equivalent to see that (1,0) € S and
that (1,1) € S. Further, we can use induction. The relation

F2 | —F,Fpyq — F2 =41
implies
F72L+2 - Fn+1Fn+2 - F72L+1 = (FnJrl + Fn)2 - Fn+1(Fn+1 + Fn) - F5+1

:_(Fr%-o-l_FnFnJrl_Fr%)::Fl'
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Problem 9.3.6. Prove that for any integer n > 4, F,+1 is not a prime.
Solution. We have the identity

F:ll -1= Fn—QFn—an+1Fn+2 (1)

Assume that F;, + 1 is a prime for some positive integer n > 4. Using
(1), it follows that F,, 4+ 1 divides at least one of the integers F,,_o, Fj,_1,
Fri1, Fhyo. Since F,, + 1 is greater than F,,_s and F),_1, it follows that
F, + 1 divides F,+1 or F,4o. But F,, 11 < 2F,, and F, 12 < 4F,, hence
F,, + 1 cannot divides F,,+1 or F), 12, and the desired conclusion follows.

Problem 9.3.7. Let k be an integer greater than 1, ag =4, a1 = as =
(k? —2)? and

Gpt1 = nan—1 — 2(an + an_1) — ap_2 + 8 for n > 2.

Prove that 2+ \/a, is a perfect square for all n.

Solution. The Fibonacci numbers are involved here again but it is much
harder to guess how they are related to the solution.

Let ), u be the roots of the equation t2—kt+1 = 0. Notice that A+ = k,
A = 1. Amending the Fibonacci sequence by setting Fiy = 0, we claim that

an = (A + p# ) forn =0,1,2,...

This is readily checked for n = 0,1, 2. Assume it holds for all £ < n. Note

that the given recurrence can be written as
Ap4+1 — 2= (Cln — 2)(an_1 — 2) — (an_g — 2),

and that aj = (A% 4+ p2%)2 is equivalent to ap — 2 = A% 4 p4f%. Using

the induction hypothesis for k =n — 2,n — 1,n, we obtain

Uns1 — 92— (/\4Fn + M4Fn)(/\4Fn,1 + M4Fn,1) _ ()\4Fn,2 + lu4Fn,2)
_ )\4(Fn+Fn71) + ’ul4(Fn+Fn71) + )\4(Fn71+Fn72)M4Fn71

+M4(Fn—1+Fn—2))\4Fn—1 o ()\4Fn—2 + N4Fn—2)

_ )\4Fn+1 + M4Fn+1 + ()\'u)4Fn—1()\4Fn—2 + M4Fn—2) _ (/\4Fn—2 + lu4Fn—2)_

Since Ap = 1, it follows that
Uns1 = 24+ )\4Fn+1 + M4Fn+1 _ ()\2Fn+1 + N2Fn+1)2

and the induction is complete.
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Now
2+M:2+A2Fn +N’2Fn _ (/\Fn +N’Fn)2'

Since
AT ™ N+ ) = (A ™) A AT 4 ™),

we have
AT +#m _ k(}\mfl +#m71) _ ()\m72 +#m72)’

leading to an easy proof by induction that A" + ™ is an integer for all

nonnegative integers m. The solution is complete.

20.3.2 Problems involving linear recursive relations

Problem 9.3.12. Let a,b be integers greater than 1. The sequence x1,
T2, ... 1s defined by the initial conditions xg =0, ©1 = 1 and the recursion

T2n = AT2n—1 — T2n—2, TL2n+1 = bxron — Tan—1

for n > 1. Prove that for any natural numbers m and n, the product

TntmTntm—1 - - - Tnt1 18 divisible by TpTm—1-
(2001 St. Petersburg City Mathematical Olympiad)

Solution. We will show that ,,|xgm,, and then show that
ged(Tpm, Tm—1) = 1.

First, consider our sequence modulo z,, for some m. Each zp4; is
uniquely determined by xg,xr_1 and the parity of k. Express each x; as
a function f;(a,b). We have z; = fi(a,b)z; (mod z,,). Suppose z, = 0
(mod x,) for some r. Since each term is a linear combination of two pre-

ceding ones,
ZTitr = fila,D)zry1  (mod x,,) if m is even, (1)

ZTitr = fi(b,a)xry1  (mod z,,) if m is odd. (2)

Now we need to prove the following statement.

Lemma. The function f;(a,b) is symmetric for any odd 1.

Proof. We will prove also that f;(a,b) is symmetric function multiplied
by a. Now, we are to prove that for_1(a,b) is symmetric and for_2(a,b) =
agak—2(a,b), where gop_o is symmetric too, for any positive integer k. Pro-
ceed by induction on k. For k = 1 we have fi(a,b) = 1 and go(a,b) = 0.
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Suppose that for_1(a,b) is symmetric and far—2(a,b) = agor—2(a,b) where
g2k—2(a, b) is symmetric too. Then we can write

for(a,b) = xop, = axor—1 — Togx—2
= a(xak—1 — g(a,b))
= a(for—1(a,b) — gar—2(a,b))

and

fort1(a,b) = xopp1 = abrog_1 — brag—2 — Tak—1
= abror_1 — abq — Tap1

= (ab—1) fop—1(a,b) — abgar—2(a,b).

It shows that fory1 and go are symmetric too and completes the step
of induction. O

Now we are to prove that @, |xgm,. Proceed by induction on k. For k = 1
this statement is true. Let 2, |gm. Then from (1) and (2) putting r = km
and ¢ = m, we obtain the following. If km is even, then

Tpo(ht1) = fm (@, 0)Zpmi1 = TiTrmy1 =0 (mod z,y,).
For km odd m is odd too and f,(a,b) = f(b,a). Hence, we have
Tp(hr1) = Sm(0,0)Trmi1 = fin(a,0)Thmy1 = TimTrme1 =0 (mod 2y, ).

So, for each nonnegative integers k, m T, |Tim.

Since the product x,+1Zp+t2 ... Tptm has m terms, one of their indices
is divisible by m and another’s index is divisible by m — 1. Thus both
ZTm and x,,—1 divide the product. If we can show that z,, is relatively
prime to x,,—1, we would be done. We will prove this by induction. For
the base case, z( is relatively prime to z1. Now, x2, = axo,—1 — Ton—_2.
Any prime factor common to xo, and 9,1 must also divide xo,_2, but
because xao,_o is relatively prime to xs,_1, there is no such prime factor.
A similar argument holds for xs,+1 because 2,11 = bxo, — x2,—1. Thus
T Tm—1](Tnt1Tn12 -« Tontm)-

Problem 9.3.13. Let m be a positive integer. Define the sequence

2

{an}tn>0 by ap = 0, a1 = m and ap+1 = Mma, — an—1 for n > 1. Prove

that an ordered pair (a,b) of nonnegative integers, with a < b, is a solution

of the equation
a?+b*

ab+1
if and only if (a,b) = (an, any1) for some n > 0.
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(1998 Canadian Mathematical Olympiad)

Solution. The "if” direction of the claim is easily proven by induction
on n; we prove the ”only if” direction by contradiction. Suppose, on the
contrary, that there exist pairs satisfying the equation but not of the de-
scribed form; let (a,b) be such a pair with minimal sum a 4+ b. We claim
that (c,a) = (m2a—b,a) is another such a pair but with smaller sum ¢+ a,
which leads to a contradiction.

(a) a = 0. Then (a,b) = (0,m) = (ap, a1), a contradiction.

(b) @ = m. Then (a,b) = (m,m?) = (a1, az), a contradiction.

(c)a=1.Then b > 1 =1 and (b+ 1)|(b* + 1); but (b+ 1)|(b* — 1),
thus (b + 1)|[(b? + 1) — (b — 1)] = 2. We have b = 1, thus m = 1 and
(a,b) = (1,1) = (a1, a2), a contradiction.

(d) 2 < a < m. Rewrite (a® + b%)/(ab+ 1) = m? as

b2 —m?ab +a®> —m? =0,
we know that ¢t = b is a root of the quadratic equation
t?2 —m?at + a® —m? = 0. (1)

Thus m*a®+4m?—4a? the discriminant of the equation must be a perfect
square. But
(m?a+1)* = m'a® + 2m2a + 1

> m*a? +4m? — 4a® > (m?a)?

for 2 < a < m. So the discriminant cannot be a perfect square, a contra-
diction.

(e) @ > m. Again t = b is a root of (1). It is easy to check that ¢t =
m2a — b = c also satisfies the equation. We have bc = a?

b>0,c>0.Since a >0 and ¢ >0, ac+ 1 > 0, we have

—m?2 > 0; since

+a? 9
=m-.
ca+1

Since ¢ > 0, b > a and bc = a® — m? < a?, we have ¢ < a. Thus (c, a) is

a valid pair. Also, it cannot be of the form (a,,, a,11) or else

(av b) = (an+17 m2an+1 - an) = (an+17an+2)~

But then, c+a < a+a < b+ a, as desired.
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From the above, we see that our assumption is false. Therefore every pair
satisfying the original equation must be of the described form.

Problem 9.3.14. Let b, c be positive integers, and define the sequence
ai,as,... byay =b, ax = ¢, and

An42 = |3an+1 - 2an|

form > 1. Find all such (b, c) for which the sequence a1,as, ... has only a
finite number of composite terms.

(2002 Bulgarian Mathematical Olympiad)

Solution. The only solutions are (p, p) for p not composite, (2p, p) for p
not composite, and (7,4).

The sequence a1, ao, ... cannot be strictly decreasing because each a,, is a
positive integer, so there exists a smallest k£ > 1 such that ax11 > aj. Define

a new sequence by, by, ... by by, = anyk—1, S0 ba > b1, bpto = |3by11 — 2by,|
for n > 1, and by, bo, ... has only a finite number of composite terms. Now,
if bn+1 > bnv

bn+2 = |3bn+1 - 2bn| = 3bn+1 —2b, = anrl + 2(bn+1 - bn) > bn+17

so by induction b, 19 = 3b,4+1 — 2b, for n > 1.
Using the general theory of linear recurrence relations (a simple induction
proof also suffices), we have

b,=A-2""'+B

for n > 1, where A = by — by, B = 2b; — by. Suppose (for contradiction)
that A # 0. Then b, is an increasing sequence, and, since it contains only
finitely many composite terms, b, = p for some prime p > 2 and some
n > 1. However, then b, ;;,—1) is divisible by p and thus composite for
[ > 1, because

bpipny =A-2771. 210D L B=4.2""1 4 h=0 (mod p)

by Fermat’s Little Theorem. This is a contradiction, so A =0 and b, = b;
for n > 1. Therefore b; is not composite; let by = p, where p = 1 or p is
prime.

We now return to the sequence a1, as, ..., and consider different possible

values of k. If kK = 1, we have a; = by = by = a2 = p, so b = ¢ = p for
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p not composite are the only solutions. If k > 1, consider that ax_1 > ag
by the choice of k, but axy1 = |3ar — 2ax—1|, and ar41 = be = b1 = ay,
SO apt+1 = 2ap—1 — 3ag, and thus ap_; = 2p. For &k = 2, this means that
b = 2p, ¢ = p for p not composite are the only solutions. If k£ > 2, the same

approach yields

3aip_1+ ag 7
Ar—2 = ﬁ = 51’,

so p = 2. For k = 3, this gives the solution b = 7, ¢ = 4, and because
3-7+4 . . .
———— is not an integer, there are no solutions for k > 3.

Remark. The reader may try to prove the following more gene-
ral statement: Let f € Z[Xi,...,X;] be a polynomial and F(n) =
fn,2m 3" ..., (k—1)"), n>1.If lim F(n) = oo, then the set of primes

dividing terms of sequence (F'(n))p>1 s infinite.

20.3.3 Nonstandard sequences of integers

Problem 9.3.21. Let {a,} be a sequence of integers such that for n > 1
(n—1)ant1 = (n+1)ay, —2(n —1).
If 2000 divides a1999, find the smallest n > 2 such that 2000 divides a,.

(1999 Bulgarian Mathematical Olympiad)

Solution. First, we note that the sequence a,, = 2n — 2 works. Then

writing b, = a, — (2n — 2) gives the recursion
(n—Dbpy1 = (n+ 1)by,.

For n > 2, observe that

Thus when n > 2, the solution to the original equation of the form

an=2(n—1)+WC

for some constant c¢. Plugging in n = 2 shows that ¢ = as — 2 is an integer.
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Now, because 2000|a1999 Wwe have

1999 - 1998

— ¢

implies —4 + 1001¢ = 0, hence ¢ = 4 (mod 2000).
Then 2000|a,, exactly when

0

2(1999 — 1) +

2(n—1)+2n(n—1)=0 (mod 2000) &
(n—=1)(n+1)=0 (mod 1000).
(n —1)(n+ 1) is divisible by 8 exactly when n is odd, and it is divisible
by 125 exactly when either n — 1 or n + 1 is divisible by 125. The smallest
n > 2 satisfying these requirements is n = 249.
Problem 9.3.22. The sequence (an)n>o0 is defined by ap =1, a1 = 3
and

u Gn+1+9a, if n s even,
+2 = . .
" 9an+41 + ba, if nis odd.

Prove that
2000
(a) Z a2 is divisible by 20,
k=1995
(b) asnt1 is not a perfect square for every n =10,1,2,...

(1995 Vietnamese Mathematical Olympiad)

Solution. (a) We will first prove the sum is divisible by 4, then by 5. Note
that ant+2 = ant1 + an (mod 4) whether n is odd or even. The sequence
modulo 4 thus proceeds 1, 3, 0, 3, 3, 2, 1, 3,...1in a cycle of 6, so the sum
of squares of any six consecutive terms in congruent to 12 + 32 + 02 + 32 +
32422 =0 (mod 4).

Now let us work modulo 5, in which case an4+2 = a1 + 4a, if n is even
and a,42 = 4a,41 if n is odd. Hence the sequence modulo 5 proceeds 1, 3,
2,3,1,4,3,2,4,1, 2, 3,...in a cycle of 8 beginning with ay. This means

afggs+- - a3 = a3+ +ai =3°+1° 44434244 =0 (mod 5).

(b) Notice that asp+1 = 5a2,—1 (mod 9). Since a; = 3, by induction
aon+1 = 3 (mod 9) for all n. However, no perfect square is congruent to 3
modulo 9, since any square divisible by 3 is also divisible by 9. Hence ag,,+1
is not a square.

Problem 9.3.23. Prove that for any natural number a1 > 1, there exists
an increasing sequence of natural numbers ay,as, ... such that a? + a3 +
---—l—a% 18 divisible by a1 +as + -+ ag for all k > 1.
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(1995 Russian Mathematical Olympiad)

Solution. We will prove in fact that any finite sequence aq,...,a; with
the property can be extended by a suitable agi1. Let sy = a;+---+ay and
te = af +---+ai. Then we are secking aj41 such that aps1 + slag; +tx.
This is clearly equivalent to ax4+1 + sk|si + tx. Why not, then, choose
g1 = s% — s +t? Certainly this is greater than ay and ensures that the
desired property is satisfied.

Problem 9.3.24. The sequence ag, a1, as, ... satisfies

Am+n + am—n = §<a2m + a2n)

for all nonnegative integers m and n with m > n. If a; = 1, determine a,.
(1995 Russian Mathematical Olympiad)

Solution. The relations asy,, + a2m = 2(agm + ag) = 4(am + am) imply
a2m = 4ap,, as well as ag = 0. Thus we compute as = 4, ay = 16. Also,
a1 + a3z = (az +a4)/2 = 10 so az = 9. At this point we guess that a; = 2
for all 1 > 1.

We prove our guess by induction on ¢. Suppose that a; = 42 for j < i.
Then the given equation with m =4 —1, j = 1 gives

a; = 5((121‘72 +az) — a2
=2a;_1+2a; —a;_»

=202 =2+ 1) +2— (2 — 4i +4) =%

Problem 9.3.25. The sequence of real numbers a1, as,as, ... satisfies

the initial conditions ay = 2, as = 500, ag = 2000 as well as the relation

Ap+2 + Ap+1 _ Ap+1

Gp+1 + 0p—1  Ap-—1

for n = 2,3,4,... Prove that all the terms of this sequence are positive

integers and that 22000 divides the number asooo.
(1999 Slovenian Mathematical Olympiad)

Solution. From the recursive relation it follows that a, 2a,_ 1 = a2 11
for n = 2,3,... No term of our sequence can equal 0, and hence it is
possible to write

Ap+42 _ an+1

Ap+10n ApQp—1
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for n =2,3,... It follows by induction that the value of the expression
Ap41
ApQnp—1
. a
is constant, namely equal to 3 — 9. Thus Gnt2 = 2apa,41 and all terms

a201
of the sequence are positive integers.

1. .
is an even integer for

a
From this new relation, we also know that nt
Qnp

all positive integers n. Write

2000 #1999 a2
. Qn.
#1999 1998 ai

2000 =

In this product each of the 1999 fractions is divisible by 2, and a; = 2 is
even as well. Thus asggo is indeed divisible by 22000,

Problem 9.3.26. Let k be a fized positive integer. We define the sequence
ai,asz, ... by a; = k+1 and the recursion a,+1 = a% —kan +k forn>1.
Prove that a,, and a, are relatively prime for distinct positive integers m
and n.

Solution. We claim that

n:Hai+kv n >0,

assuming that ap = 1. Since aj41 — k = a;(a; — k), we have

n—1

— ajt+1 — K
an—k—H aj—k l—Iaj7
j=1
which is what we wanted.
Therefore, we have that a,, = k (mod a;) for ¢ < n. Hence, if there

exist integers d > 1, x,y > 1 such that d|a, and d|a,, d divides k. We
now show that for ¢ > 0, a; = 1 (mod k) by induction on i. For the base
case, a3y = k+ 1 =1 (mod k). Now assume that a; = 1 (mod k). Then,
ip1 = a? —ka;+ k= a? = 1 (mod k). Thus, because all common divisors
d of a, and a, must be divisors of k, we have a; =1 (mod d) and a, =1
(mod d). Therefore, no such divisors exist and «a; is relatively prime to a;
for all 4,5 > 0, as desired.

Problem 9.3.27. Suppose the sequence of nonnegative integers aq,

as, ..., a1997 satisfies

ai+aj§ai+j§ai+aj+1
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for alli,j > 1 with i + j < 1997. Show that there exists a real number x
such that a, = |nx] for all 1 <n < 1997.

(1997 USA Mathematical Olympiad)

Solution. Any x that lies in all of the half-open intervals

L,:[EE m1+1)7 n=1,2,...,1997

)
n n

will have the desired property. Let

a a . a, +1 ag+ 1
L= max —=-2 and U= min n =1 .
1<n<1997 n p 1<n<1997 N q

‘We shall prove that

[o3% <am—|—1

b

n m
or, equivalently,

ma, < n(am +1) (*)

for all m,n ranging from 1 to 1997. Then L < U, since L > U implies
that (x) is violated when n = p and m = ¢. Any point z in [L,U) has the
desired property.

We prove (x) for all m, n ranging from 1 to 1997 by strong induction. The
base case m = n = 1 is trivial. The induction step splits into three cases. If
m = n, then (%) certainly holds. If m > n, then the induction hypothesis
gives (m—mn)a, < n(am-—n+1), and adding n(am—n+an) < na,, yields (x).
If m < n, then the induction hypothesis yields ma,—n, < (n —m)(am, + 1),
and adding ma, < m(am + an—m + 1) gives (x).

Problem 9.3.28. The sequence {ay} is given by the following relation:
an, — 1

5

2ay,

if an>1,
Ap+4+1 =

, if an < 1.
1—a,

Given that ag is a positive integer, a, # 2 for each n = 1,2,...,2001,
and as002 = 2. Find agp.

(2002 St. Petersburg City Mathematical Olympiad)

Solution. Answer: ag = 3 - 22002 — 1.
We will first show that this value actually satisfies the condition asgge = 2

and a; # 2 for any i < 2002. Applying the first rule, an+1 = times

n — 2
2002
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will show that asgge is in fact 2 and a; is actually greater than 2 for all
i < 2002.

Lemma. For n < 2000, if a, is not an integer, a, = pn/qn, where p,
and gy, are positive odd integers, (p,q) =1 and ¢ > 1.

Proof. We proceed by using induction. Case case: n = 2000. asggg is
either 5/7 or 1/5. Suppose a,+1 = p/q. Then:

Case 1. a, = 2p/q+ 1. Then a,, = (2p + ¢)/q. Suppose d|(2p + q) and
d|g. Then d|(2p + ¢ — q) or d|2p. Since ¢ is odd, d must also be odd. So
(d,2) =1 and therefore d|p. Because d|p, d|q, and (p,q) = 1, d must equal
1. Therefore (2p+ ¢, ¢) = 1 and since 2p+ ga and ¢ are both odd as well, a,,
satisfies the conditions stated in the lemma, thus completing the inductive
step.

Case 2. a,, = ]3/ (2 + B) - P Again suppose d divides both the
q q 2q+p

numerator p and denominator 2p+¢. Then d|(2p+ ¢ — p) or d|2q. But since

p is odd, d is odd, and so d|q. Because (p,q) = 1, d is equal to 1 and so
(p,2q + p) = 1. Since p and 2¢q + p are odd and are relatively prime, a,
satisfies the conditions and completes the proof.

We must now only consider the case where aggo1 = 1/2. In this case, az000
is either 2 or 5/7. If it is 2, the conditions of the problem are violated. The
lemma says that from the 5/7, we will never see an integer value for any
previous term.

Problem 9.3.29. Let x1 = 290 = 3 = 1 and Tp43 = Tp + Tpy1Tn42
for all positive integers n. Prove that for any positive integer m there is an
integer k > 0 such that m divides xy.

Solution. Observe that setting g = 0 the condition is satisfied for
n = 0.

We prove that there is integer k& < m? such that x;, divides m. Let r; be
the remainder of x; when divided by m for ¢t = 0,1,...,m3 + 2. Consider
the triples (ro,71,72), (T1,72,73), - - -, (T3, Tm3+1, 'm312)- Since ¢ can take
m values, it follows by the Pigeonhole Principle that at least two triples
are equal. Let p be the smallest number such that triple (rp, rpt1, 7pt2) is
equal to another triple (ry,7g+1,74+2), p < ¢ < m3. We claim that p = 0.

Assume by way of contradiction that p > 1. Using the hypothesis we
have

Tpyo2 =Tp_1 + Tprpy1  (mod m)

and

Tgr2 =Tq—1 +Tqrq+1  (mod m).
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Since 1, = ¢, Tp41 = Tgt1 and rppo = 742, it follows that r,—1 =
Tg—1 SO (Fp—1,7p,Tp+1) = (Tq—1,7¢;Tq+1), Which is a contradiction with
the minimality of p. Hence p = 0, so vy = g = 0, and therefore z, = 0
(mod m).

Problem 9.3.30. Find all infinite bounded sequences a1, as, ... of posi-

tive integers such that for alln > 2,

a. — Ap—1 + Gp—2
n— 5 -
ged(an—1, Gn_2)

(1999 Russian Mathematical Olympiad)

Solution. The only such sequence is 2,2,2,...which clearly satisfies the
given condition.

Let g, = gcd(ay,ant1). Then g,41 divides both a,4+1 and an49, so it
divides gnan42 — an—1 = a, as well. Thus g,4; divides both a,, and a,41,
and it divides their greatest common divisor g,.

Therefore, the g; form a nonincreasing sequence of positive integers and
eventually equal some positive constant g. At this point, the a; satisfy the

recursion

gan = Ap—-1 + an—2.

If g =1, then a, = an—1 + ap—2 > a,—1 so the sequence is increasing
and unbounded.
If g > 3, then
Ap—1 + Ap—2 Ap—1 + Ap—2

an = 7 < 5 < max{an_1,an_2}.

Similarly, an+1 < max{an—1,an} < max{an_g2,an_1}, so that
max{an, @ni1} < max{an,—2,an_1}.

Therefore the maximum values of successive pairs of terms form an infi-
nite decreasing sequence of positive integers, a contradiction.

Thus g = 2 and eventually we have 2a,, = a,—1 + an_2 Or ay, — ap_1 =
1
——(ap—1—an—2). This implies that a; —a;_1 converges to 0 and that the a;

2
Ap—1 + Qp— .
are eventually constant as well. From 2a,, = 1 T2 this constant
ged(an—1,an—2)
must be 2.
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Now if a,, = any1 = 2 for n > 1, then ged(an—1,a,) = ged(an—1,2)
either equals 1 or 2. Now
Qp—1+ an
ged(an_1,2)’

implying either that a,—; = 0, which is impossible, or that a,—1 = 2.

2= Up41 =

Therefore all the a; equal 2, as claimed.

Problem 9.3.31. Let ay,a9,... be a sequence of positive integers sat-
isfying the condition 0 < ap41 — an < 2001 for all integers n > 1. Prove
that there exist an infinite number of ordered pairs (p, q) of distinct positive
integers such that ap, is a divisor of aq.

(2001 Vietnamese Mathematical Olympiad)

Solution. Obviously, if (a,), is such a sequence, so is (ay4f), for all k.
Thus it suffices to find p < ¢ such that ap|aq. Observe that from any 2001
consecutive natural numbers, at least one is a term of the sequence. Now,
consider the table:

ap +1 ay + 2 a1 + 2001
a1 +1+=x a1 +2+x1 a1 + 2001 + x1
a1 +14+z1+22 ar+24+x1+22 ... a1 +2001+ 21 + 22
where
2001 2001 2001

$1:H(a1+7;)7 $2:H(a1+i+$1), x3:H(a1+az1+x2+i)
i=1 i=1 i=1
and so on. Observe then that if ,y are on the same column, then z|y or
ylx. Now, look at the first 2002 lines. We find in this 2002 x 2001 matrix
at least 2002 terms of the sequence (at least one on each line), thus there
are two terms of the sequence on the same column and one will divide the
other.
Problem 9.3.32. Define the sequence {x,}n>0 by xo =0 and

37‘+1 -1
Tp—1 + —g if n=3"(3k+1),
Ty =
37‘+1 1
Tp—1 — %7 if n=3"(3k+2),

where k and r are nonnegative integers. Prove that every integer appears

exactly once in this sequence.
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(1999 Iranian Mathematical Olympiad)

Solution. We prove by induction on ¢ > 1 that

. 3—-3 3t-5 3t—1
(1) {$07m17'~'7$3t72}: {_ 2 T 9 T g }
3 —1

(ii) wgr—1 = —

These claims imply the desired result, and they are easily verified for
t = 1. Now supposing they are true for ¢, we show they are true for ¢ + 1.

For any positive integer m, write m = 3"(3k+ s) for nonnegative integers
r, k,s, with s € {1,2}, and define r,,, = r and s, = s.

Then for m < 3!, observe that

Tm = Tm+43t = Tm+2,3t and Sm = Sm+3t = Tm+2,3t,

so that
Tm — Tm—1 = T3t4m — L3t4m—1 — L2.3t4m — L2.3tfm—1-
Setting m = 1,2,...,k < 3! and adding the resulting equations, we have
Tk = T3t4f — T3t

Tk = T2.3t4+k — T2.3t.

Now, setting n = 3" in the recursion and using (ii) from the induction
hypothesis, we have z3: = 3¢, and

343 3t —1
{"E3t7...,$2.3t72} = { s

5 5
3'+1
To.3t_1 = .
2-3t—1 5
Then setting n = 2 - 3! in the recursion we have xo.3: = —3¢, giving
( - 3t —3 341
T2.3ty...,L3t+1_9o5 = B yeeey B
3+t 1
To.gt+1_1 — —T

Combining this with (i) and (ii) from the induction hypothesis proves
the claims for ¢ 4+ 1. This completes the proof.
Second solution. For n; € {—1,0,1}, let the number

[PmTm—1 - - . 1]
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m

in base 3 equal Z ni - 3%, It is simple to prove by induction on k that the
i=0

base 3 numbers with at most k digits equal

3h-1 3h-3  3F-1
2 b 2 rc 2 b

which implies that every integer has a unique representation in base 3.

Now we prove by induction on n that if n = anam—1...ap in base 3,
then x, = [bybm—1...bo] in base 3, where b; = —1 if a; = 2 and b; = q;
for all other cases.

For the base case, 9o = 0 = [0]. Now assume the claim is true for n — 1.
If n =amam—1...a,41100...0, then

—

T

3rtt—1
xnzxn—l‘FT
= (b1 bi0—1— 1.+ — 1]+ [11...1]

r r—+1
= [bbm—1...5;100...0].
——

r

If instead n = amam—_1...a;200...0, then
——

T

_ N 3r+1+1
Tp = Tp—1 2
= [bybm—1... b1 —1—1---—1]+[-111...1
r r+1

= [bmbm—1.-.b; —100...0].
—

T

In either case, the claim is true for n, completing the induction.

To finish the proof, note that every integer appears exactly once in base
3. Thus each integer appears exactly once in {z,, }n>0, as desired.

Problem 9.3.33. Suppose that ay,as,. .. is a sequence of natural num-

bers such that for all natural numbers m and n, ged(am,an) = aged(m,n)-

Prove that there exists a sequence by, bs, ... of natural numbers such that
an = Hbd for all integers n > 1.
d|n

(2001 Iranian Mathematical Olympiad)
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Solution. For each n, let rad(n) denote the largest square-free divisor
of n (i.e. the product of all distinct prime factors of n). We let b,, equal to
the ratio of the following two numbers:

e E,, the product of all a,, /4 such that d is square-free, divides n, and

has an even number of prime factors.

e Oy, the product of all a,,/q such that d is square-free, divides n, and

has an odd number of prime factors.

Lemma 1. H by = ay,.
d|an
Proof. Fix n, and observe that H b, equals
d|n

Iz
d|n
Tos

d|n

(%)

In the numerator of (x), each Fy is the product of a,, such that m|d.
Also, d|n, implying that the numerator is the product of various a,, such
that m|n. For fixed m that divides n, how many times does a,, appears in
the numerator HEd of (%)?

dn

If a,, appears in E; and d|n, then let ¢ = d/m. By the definition of E,,
we know that (i) ¢ is square-free and (ii) ¢ has an even number of prime
factors. Because d|n and ¢t = d/m, we further know that (iii) ¢ divides n/m.

Conversely, suppose that ¢ is any positive integer satisfying (i), (ii), and
(iii), and write d = tm. By (iii), d is a divisor of n. Also, t is square-free
by (i), is a divisor of d, and has an even number of prime factors by (ii).

Thus, a,, appears in Fg.
l l
Suppose that n/m has [ distinct prime factors. Then it has ( O) + ( 2) +
... factors t satisfying (i), (ii), and (iii), implying that a,, appears in the

()

times. Similarly, a,, appears in the denominator of () exactly

(1))

numerator of (%) exactly
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times. If m < n, then [ > 1 and these expressions are equal, so that the
ap,’s in the numerator and denominator of (x) cancel each other out. If
m = n, then [ = 0, so that a,, appears in the numerator once and in the
denominator zero times. Therefore,

1=

b :d|n —a,,
=170,

d|n

as desired. 0
Lemma 2. For any integer o that divides some term in a1, as, ..., there
exists an integer d such that

ala, < dn.

Proof. Of all the integers n such that a|a,, let d be the smallest.

If alay, then al|gcd(aq, an) = ageqa,n)- By the minimal definition of d,
ged(d,n) > d. But ged(d,n)|n as well, implying that ged(d,n) = d. Hence,
d|n.

If d|n, then ged(aq, an) = aged(dn) = @aq- Thus, agla,. Because alaq, it
follows that «|a,, as well. O

Lemma 3. For each positive integer n, b, = E, /O, is an integer.

Proof. Fix n. Call an integer d a top divisor (resp. a bottom divisor) if
d|n, n/d is square-free, and n/d has an even (resp. odd) number of prime
factors. By definition, E, is the product of ag4 over all top divisors d, and
Oy is the product of a4 over all bottom divisors d.

Fix any prime p. We show that p divides F, at least as many times as
it divides O,,. To do this, it suffices to show the following for any positive
integer k:

(1) The number of top divisors d with a,, /4 divisible by p” is greater than
or equal to the number of bottom divisors d with a,, /4 divisible by p".

Let k be any positive integer. If p* divides none of ay,as, ..., then (1)
holds trivially. Otherwise, by the previous lemma, there exists an integer
dp such that

Prlam < dolm.

Hence, to show (1) it suffices to show:

(2) The number of top divisors d such that do|(n/d), is greater than or
equal to the number of bottom divisors d such that dp|(n/d).
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If do { n, then (2) holds because dy does not divide n/d for any divisor d
of n, including top or bottom divisors.

Otherwise, dp|n. For which top and bottom divisors d does dy divide
n/d? Precisely those for which d divides n/dy. If n/dy has I > 1 distinct
prime factors, then there are as many top divisors with this property as

there are bottom divisors, namely

(@)=

If instead dg = n and | = 0, then the top divisor 1 is the only value d
with d|(n/dp). In either case, there are at least as many top divisors d with
d|(n/dy) as there are bottom divisors with the same property. Therefore,

(2) holds. This completes the proof. O
Therefore, a,, = H b4, and b,, = F,,/O,, is an integer for each n.
d|n
Alternative solution. (Gabriel Dospinescu) Let us define b; = a1 and
b, = In_ form > 1. Of course, if d|n, then ag4|a, and so lcmag|a, and
lemag d|n
d|n d#n
d#n
b, € Z.
Now comes the hard part, proving that H bq = an, which is the same as
d|n

H by = lc(l:rnad. (1)
din T:l
d;lén a7

We will prove (1) by strong induction. For n = 1 it is clear

Now, for all d|n, d # n, by inductive hypothesis we have

aqg = Hbd/| H bq,

d’'|d d|n
d#n

thus bg is a multiple of lem agq. It remains to prove that ba|lemag.
H d p dﬂ& d p g dl dﬂé’; d
d#n d#n
The essential observation is:
Lemma. If ged(by,b,) > 1, then ul|v or v|u.
Proof. We may assume that v < v. Assume that u does not divide v.

Then
Ay, Ay,

u = -
lemag Qged(u,v)
d|u
d#u
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(since ged(u,v) # u) and also
bv‘aiv_
Qged(u,v)

But then

v v d uy v
gcd(bu7bv)|gcd( a 7 @ ) _ 9¢ (ay, ay)
Aged(u,w) Qged(u,v) Qged(u,v)

Now, let p be a prime number and let i; < iz < --- < i such that i4|n,
ig 7 n for all ¢ and b;, has the exponent of p equal to e, > 1 and any bq
with d|n, d # n, d # iq for all g is not a multiple of p. From the lemma we

find 41]é2] . .. |ix. But then from the inductive hypothesis we have
A4y = H bd

is a multiple of b;, b,, ... b;, , thus ldclm aq has the exponent of p greater than
n
d#n

or equal to the exponent of p in H bgq. This ends the solution.

d|n
d#n
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Problems Involving Binomial
Coeflicients

21.1 Binomial coefficients
Problem 10.1.7. Show that the sequence
(2002) (2003) (2004)
2002/ \2002/"\2002/) """
considered modulo 2002, is periodic.
(2002 Baltic Mathematical Competition)

Solution. We will show that the sequence, taken modulo 2002, has pe-
riod m = 2002 - 2002!. Indeed,

<m+m> (x+m)(x—1+m)...(x—2001+m)

2002 2002!
x(x—1)...(x—2001) + km
B 2002!
x(z —1)...(x —2001)
= 2002
2002! 2002k

x
= (2002> (mod 2002).

Problem 10.1.8. Prove that
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for any prime number p.
Solution. A short solution uses the popular Vandermonde identity

> (1)) - (")

Set m =n =k =p to get

()= @6 GG+ 62) 6+ 6)6)

The first and the last term on the right-hand side equal 1. Since p is a
prime, it divides each binomial coefficient (Z) for 1 <k <p-—1. So each

2
of the remaining terms is divisible by p?, and hence ( p) is congruent to
p

2 modulo p?, as required.

Problem 10.1.9. Let k,m,n be positive integers such that m +k + 1 is
a prime number greater than n+ 1. Let us denote Cs = s(s+1). Show that
the product

(Cm+1 - Ck)(cm+2 - Ck) cee (Cm+n - Ck)
1s divisible by C1C5 ... C,.
(18" IMO)

Solution. We use the identity:
Cp=Co=plp+1)—qlg+1)=(p—-gp+q+1),
which is valid for all positive integers p and ¢q. Then one has:
Coti —Cr=(m—k+i)(m+k+i+1), Vi=1,2,....n

For the given products we obtain respectively, the formulas

n

(Crms1 = Ch) .. (Congn = Ci) = [[m =k + ) [J(m + k + 1 +4)
i=1 3

i=1
C1Csy...Cp =nl(n+1)!

Their quotient is the product of two rational fractions:

n n

[T0n -k +i) [[m+k+1+10)

=1 =1
nl (n+1)!
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It is known that the product of any consecutive integers is divisible by
n! and their quotient is zero or a binomial coefficient, possible multiplied
by —1. In our case we have

;%ipm—k+ﬂ:<m_:+n)

For the second fraction, a factor is missing to the numerator. We support
our argument by using that m+ k41 is a prime number greater than n -+ 1:

n

[[m+E+1+0)
=0

1
(n—|—1)!i

1 1
m+k+1 (n+41)!

. 1 mr +n+1
S om+k+1 n+1 '
m+k+n+1

The binomial coefficient ( 1 ) is an integer number which is
n

divisible by m + k + 1, then our number is integer.

(m+k+1+1i)=
=1

Problem 10.1.10. Let n, k be arbitrary positive integers. Show that there

exists positive integers a; > as > az > a4 > as > k such that
ai ao as a4 as
=4+ + + + + .
=)= (5) =(5) = (5) = ()
(2000 Romanian IMO Team Selection Test)

Solution. For fixed k, choose m > k such that n + T; is an odd

number. This is possible after considering the parity of n. If n is an odd

number, take m = 0 (mod 4) and if n is an even number take m = 3
(mod 4).

m
Since n + 3) is an odd number, we express it under the form

m
m+( >=2a—|—1.
3
Then use the identity:
a a+1 a+2 a+3
1= (5)-(5) - (37)+ ()
and obtain:
_[a a+1 a—+2 n a+3 m
"= \3 3 3 3 3)
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Notice that for large m we may insure that

(3

Qq=——————2>1m
2

yielding the desired representation.

Problem 10.1.11. Prove that if n and m are integers, and m is odd,

then
1 - (3m k
— 3n—1
G D <3k)( n-1)
k=0
18 an integer.

(2004 Romanian IMO Team Selection Test)

27

Solution. Let w = ¢™3 . Then
3§: Y (3, _ 1)k
— 3k

=(1+V3n 1"+ (1 +wV3n— 1"+ (1 +?V3n -1 (1)

The right side of the above equality is the sum of the 3m-th power of the
roots x1, s, r3 of the polynomial

(X -1P-(Bn—-1)=X*-3X2+3X — 3n.
Let s = 2% 4+ 25 + 5. Then sg = s; = 5o = 3 and
Sk43 = 3Sp42 — 3Sky1 + Insk. (2)

It follows by induction that each sj is an integer divisible by 3[§]+1. A
repeated application of (2) yields

Ski7 = 63nspyo — 9(n? — 3n — 3)spp1 + 27n(2n + 1)sp.

Since s3 = 9n, it follows inductively that sg 3 is divisible by 32**2n, for
all nonnegative integers k, and the conclusion follows by (1).
Problem 10.1.12. Show that for any positive integer n the number

E“: <2n + 1) o3k
= \2k+1

is not divisible by 5.
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(16" IMO)

Solution. Let us consider the binomial formula:

2n+1
2 1 i
(1+2v2) 1 = (1428)4 = 3 < " )232

. 7
=0

D1 g = (2041 5 s
- 25 2. 23 = a, + b, VB,
;( o ) +Z<2¢+1> 2 =a, +b,V8

=0
where
"L (2041 g, " 2n 41\ L,
= 2% and b, = 2%,
¢ Z( 2i ) an ;<2z’+1>
In a similar way,
(1—-23)2"1 =g, — b, V3.

After multiplying these two equalities we obtain —72"*! = ¢2 — 8b2. If
b, = 0 (mod 5) the above equality gives a2 = —2 (mod 5) = 3 (mod 5).
Since 3 is not a perfect square modulo 5, we obtain a contradiction.

Problem 10.1.13. Prove that for a positive integer k there is an integer
n > 2 such that (T), ( " 1) are all divisible by k if and only if k is
n—

a prime.
Solution. If k is a prime we take n = k and the property holds (see

property 7)). There are k’s for which (?) e (n i 1) are not all divisible

by k, for any n > 2. Indeed, for k = 4,

n n
=" _ 9= _ > 2.
(1> 4+t (n—1> 2 2 2 (mod 4) for all n > 2

We prove that the set of positive integers k for which the claim holds is
exactly the set of primes.

Suppose now that k is not a prime. Then consider two cases:

(a) k = p", where p is a prime and r > 1. We find a value of i for which
the statement does not hold.

Suppose, on the contrary, that there is a positive integer n such that for

all1 <i<n—1, (n) is divisible by p". Clearly, n is divisible by p”, and
i
we write n = p®3 for some 3 with ged(8,p) = 1. Take i = p*~ 1. Then

a-l_1 .

<n> - ? H Bp® — j
. - —1_ s

v =0 P° J
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ﬂj)f__], = fBp. If ged(j,p) = 1, then both the above

numerator and the denominator are coprime with p. In all other cases, we

If 5 = 0, then

write 7 = dp” for some & coprime with p and v < a — 2. Thus,

Bp*—j _ Bp*—opY  p'(Bp*T7 —9)

pet—j  peTl—dpr pr(peTiTl = 4)

Now, since a —y—1 > 1, we have fp®~7 —§ and p® 7~ —§ coprime with
p. In this case, the power of p in the above numerator and the denominator
is v, and the power of p in the above product of fractions, which is an
integer, is 1. This contradicts the assumption that p”|n.

(b) k is divisible by at least two distinct primes p, q. Assume by contra-
diction that there is a positive integer n as required. Then n is divisible
by pq and we can write n = p*8 where ged(p, ) = 1 and 8 > 1 (since ¢
divides (3). Take ¢ = p®. Then

1 .
<n> _ pH pp* —j
v =0 P

a

When 5 = 0, % = (3 is coprime with p. In all other cases, both
pT =1

. Bp* —j

the numerator and the denominator of ——=

are either coprime with

p or are divisible by the same power of p, and therefore the product of
n

those fractions is not divisible by p. But p divides k, and hence ( > is not
i

divisible by k, contrary to our assumption.
Therefore the only positive integers k for which the claim holds are the

primes.

21.2 Lucas’ and Kummer’s Theorems

Problem 10.2.4. Let p be an odd prime. Find all positive integers n

such that " , " R " are all divisible by p.
1 2 n—1

Solution. Express n in base p: n = ng +n1p + -+ + nyp™, where 0 <
N, N1y, Nm < p—1 and n,, < 0. We also write k = ko+kip+---+knp™,

where 0 < ko, k1,...,kmn < p — 1, where k,, can be zero. From Lucas’

(©)-1(2)

Theorem we have
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For n = p™, the property clearly holds. Assume by way of contradiction
that n # p™. If n,, > 1, then letting k = p™ < n, we have

n
( > =ny- 1...1 =n, #0 (mod p),

k N——

m—1times

a contradiction.
Problem 10.2.5. Let p be a prime. Prove that p does not divide any of

(T),..., ( " 1) if and only if n = sp* — 1 for some positive integer k
n—
and some integer s with 1 < s <p—1.

Solution. If n is of the form sp* — 1, then its representation in base p is

n=(s—-1){p-1)...(p—1).

k times
Forl1<i<n-—1,i=dg+up+- -+ imp™, where 0 < i, < p—1,
h=1,...,m—1and 0 <1, < s—1. Because p is a prime, it follows that p

-1 -1
does not divide either (p . ) or (8, ) Applying Lucas’ Theorem, we
1h Tm

obtain that p does not divide n yforalli=1,...,n—1.
i

Conversely, if n cannot be written in the form sp* — 1, then n; < p —1
for some 0 < j < m — 1, where nigny ... n,, is the representation of n in
base p. For

i=(p-1) 0...0

j—1times

in base p, applying again Lucas’ Theorem, we have

(?) =0 (mod p).

Problem 10.2.6. Prove or disprove the following claim: For any integer
k > 2, there exists an integer n > 2 such that the binomial coefficient (n)
i

is divisible by k for any 1 <i<n —1.
(1999 Hungarian-Israel Mathematical Competition)

Solution. The statement is false. To prove this, take k = 4 and assume
n
by contradiction that there exists a positive integer n > 1 for which ( )
i
is divisible by 4 for every 1 <i <mn — 1. Then

05%(?)22”—25—2 (mod 4),

i=1
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a contradiction.

Remark. As we have already seen in Problem 10.1.13, the set of all such
integers k is precisely the set of primes. Here we give an argument based
on Kummer’s Theorem.

Now, suppose the claim holds for some k > 1 with the number n. If
some prime p divides k, the claim must also hold for p with the number n.
Thus n must equal a prime power p”* where m > 1. Then k = p” for some
r > 1 as well, because if two primes p and ¢ divided k£ then n would equal
a perfect power of both p and ¢, which is impossible.

n\ . .
Choose i = p™~!. Kummer’s Theorem states that p‘|( = | if and only if
i

t is less than or equal to the number of carries in the addition (n — i) + ¢
in base p. There is only such carry, between the p™ ! and p™ places:

1
1 0 0 ... O
+ p—1 0 0 ... O
1 00 0 ... 0
Thus, we must have r < 1 and k must be prime, as claimed.
(Alternatively, for n = p™ and i = p™~! we have
m—1_
(n) . P H ' p"—J
. - _1 _ .
v =0 P J
m
When j = 0 then % = p. Otherwise, 0 < j < p™~! so that if p* <
p —J
p™~ ! is the highest power of p dividing j, then it is also the highest power

m
of p dividing both p™ — j and p™~! — j. Therefore % contributes
p —J

one factor of p to (n) when j = 0 and zero factors of p when j > 0. Thus
i

p? does not divide binomi, and hence again r < 1.)
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Miscellaneous Problems

Problem 11.6. Let a, b be positive integers. By integer division of a®+b>
to a + b we obtain the quotient q¢ and the remainder r. Find all pairs (a,b)
such that ¢ +r = 1977.

(19th IMO)

Solution. There are finitely many possibilities to obtain 1977 = ¢% + r.
Since 1977 is not a perfect square, 0 < r < a + b. Also, ¢ < [V1977] = 44.
From a? + b? = g(a + b) + r, we obtain:

2 2 2 2
= a®+b S +b _121
a+b a+b 2

Suppose ¢ < 43. Then r = 1977 — ¢> > 1977 — 432 = 128 and 43 > ¢ >
g — 1> 63, contradiction.
We obtained ¢ = 44 and r = 1977 — 442 = 41. To finish, we have to solve

in integer numbers the equation
a® + b* = 44(a +b) + 41.
Write it under the form:

(a —22)* + (b — 22) = 1009.
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It is not difficult to have all pairs of perfect squares having their sum
1009. There exists only the representation 1009 = 282 + 152. Then the
solutions are a = 50, b = 37 or a = 37, b = 50.

Problem 11.7. Let m,n be positive integers. Show that 25" — 7™ s
divisible by 3 and find the least positive integer of the form |25™ — 7™ —3™|,

when m,n run over the set of non-negative integers.
(2004 Romanian Mathematical Regional Contest)

Solution. Because 25 = 1 (mod 3) and 7 = 1 (mod 3), it follows that
25" — 7™ =0 (mod 3).

For the second part of the problem, we first remark that if m is odd,
then any number a = 25" — 7™ — 3™ is divisible by 15. This follows from
the first part together with

743" =2"+ (=2)" =0 (mod 5).

Moreover, for m = n = 1 one obtains 25 — 7 — 3 = 15.

Assume now that m is even, say m = 2k. Then
7" 4 3™ = 72 £ 320 = ((=3)% 4+ 3%%)  (mod 10)

=2.9% (mod 10)=+2 (mod 10)=2o0r8 (mod 10).

So, the last digit of the number 25™ — 7™ — 3™ is either 3 or 7. Because
the number 25" — 7™ — 3™ is divisible by 3, the required number cannot
be 7. The situation |25™ — 7™ — 3™| = 3 also cannot occur, because 25" —
7" —3m =1 (mod 8).

Problem 11.8. Given an integer d, let

S = {m?*+ dn’*Im,n € Z}.

Let p,q € S be such that p is a prime and r = q 18 an integer. Prove
p

that r € S.
(1999 Hungary-Israel Mathematical Competition)

Solution. Note that
(2% + dy*)(u® + dv®) = (zu £ dyv)? + d(zv F yu)?

Write ¢ = a® + db® and p = 22 + dy? for integers a,b, z,y. Reversing
the above construction yields the desired result. Indeed, solving for u and
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v after setting a = xu + dyv, b = zv — yu and a = zu — dyv, b = zv + yu

gives

ax — dby ay + br
uy=—"">H U1 =——)

p p
ax + dby ay — bx
Ug = ————=, Uy = ——.

p p

Note that

(ay + bx)(ay — bx) = (a® + db*)y? — (z* +dy*)b* =0 (mod p).

Hence p divides one of ay + bz, ay — bz so that one of vy, vy is an integer.
Without loss of generality, assume that vy is an integer. Because r = u? +
dv% is an integer and w; is rational, u; is an integer as well and r € S, as
desired.

Problem 11.9. Prove that every positive rational number can be repre-
sented in the form

a’ + b3

where a, b, c,d are positive integers.
(1999 IMO Shortlist)

Solution. We firstly claim if m,n are positive integers such that the ra-
tional number 1 = belongs to the interval (1,2) then 7 can be represented
in the form

a’ + b3

This can be realized by taking a®> —ab+b?> =a?> —ad+d?,ie. b+d=a
anda+b=3m,a+d=2a—b=3n,thatisa =m+n, b =2m — n,
d=2n—m.

We will prove now the required conclusion. If s > 0 is a rational number

3

3 3 3 3 3
. p®  dd+b (ag)” + (bg)
t b,d such that —=s = h = S (s
PHERES @ 0, ARSI AL 3T T @ s T T (ap)® o+ (bp)®

Problem 11.10. Two positive integers are written on the board. The

take positive integers p,q such that ¢ < p—s < 2. There exists positive
q

following operation is repeated: if a < b are the numbers on the board, then
a is erased and ab/(b—a) is written in its place. At some point the numbers

on the board are equal. Prove that again they are positive integers.

(1998 Russian Mathematical Olympiad)
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Solution. Call the original numbers z and y and let L = lem(z,y). For
each number n on the board consider the quotient L/n; during each oper-
ation, the quotients L/b and L/a become L/b and L/a — L/b. This is the
Euclidean algorithm, so the two equal quotients would be gcd(L/b, L/a)
and the two equal numbers on the board are L/gcd(L/z,L/y). But
ged(L/z,L/y) = 1, because otherwise z and y would both divide
L/ged(L/x,L/y) and L would not be a least common multiple. So, the
two equal numbers equal L = lem(z, y), an integer.

Second solution. Again, let z and y be the original numbers and sup-
pose both numbers eventually equal N. We prove by induction, on the
number of steps k before we obtain (N, N), that all previous numbers di-
vide N. Specifically, | N, so N must be an integer.

The claim is clear for k£ = 0. Now assume that k steps before we obtain
(N, N), the numbers on the board are (¢,d) = (N/p, N/q) for some integers
p < ¢. Then reversing the operation, the number erased in the (k + 1)st
step must be e¢d/(c+d) = N/(p+q) or e¢d/(¢c—d) = N/(q— p), completing
the inductive step.

Problem 11.11. Let f(z) 4+ ap + a1x + -+ - + apma™, with m > 2 and
am # 0, be a polynomial with integer coefficients. Let n be a positive integer,
and suppose that:

i) ag,as, ..., an are divisible by all the prime factors of n;

i1) a1 and n are relatively prime.

Prove that for any positive integer k, there exists a positive integer ¢ such
that f(c) is divisible by n.

(2001 Romanian IMO Team Selection Test)

Solution. Consider any integers ¢y, co such that ¢; Z co (mod nk) Ob-
serve that if n¥|st for some integers s,t where ¢ is relatively prime to n,
then n*|s. In particular, n* { (c; — co)t if t is relatively prime to n.

Note that

fler) = fle2) = (e1 — c2) a1+Zal P —ch)

1—1

= (Cl —CQ CL1+Z azz 1_j)

7=0

t
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For any prime p dividing n, p divides as, ..., a, but not a;. Hence, p
does not divide the second factor ¢ in the expression above. This implies
that t is relatively prime to n, so n* does not divide the product (c; —co)t =
fler) = f(ea).

Therefore, f(0), f(1),..., f(n* — 1) are distinct modulo n*, and one of
them, say f(c), must be congruent to 0 modulo n*. That is, n*|f(c), as
desired.

Problem 11.12. Let x,a,b be positive integers such that z®® = a®b.
Prove that a = x and b = x”.

(1998 Iranian Mathematical Olympiad)

Solution. If z = 1, then a = b = 1 and we are done. So we may assume

n

x > 1. Write x = Hp;“, where the p; are the distinct prime factors of z.
i=1

Since a and b divide 2%*®, we have a = pr” and b = Hpii for some

nonnegative integers «;, ;.

First suppose that some 3; is zero, that is, p; does not divide b. Then the
given equation implies that 7;(a + b) = «a;b, so that (a; — ;)b = a;. Now
p;* divides a but is coprime to b, so p3* divides a; — ; also. But pj* > «;
for a;; > 0, contradiction. We conclude that 5; > 0.

Now from the fact that

vi(a+b) = B; + bay;

and the fact that p” does not divide 3; (again for size reasons), we deduce
that p® also does not divide a, that is, a; < 3; for all i and so a divides
b. Moreover, the equation above implies that a divides (;, so we may write
b = c* with ¢ > 2 a positive integer.

Write z/a = p/q in lowest terms (so ged(p,q) = 1). Then the original
equation becomes z%p® = bqg®. Now p® must divide b, which can only occur
if p=1. That is, x divides a.

If x # a, then there exists ¢ with «; > v; + 1, so

yi(a +b) = Bi + b > (vi + 1)b

and so y;a > b. On the other hand, a is divisible by p]*, so in particular
a > ;. Thus a® > b= ¢%, or /¢ < a*/%; however, a'/* < /2 for a > 5, so
this can only hold for ¢ = 2 and a = 3, in which case b = 8 is not divisible

by a, contrary to our earlier observation.
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Thus =z = a, and from the original equation we get b = x”, as desired.

Problem 11.13. Let m,n be integers with 1 < m < n. In their decimal
representations, the last three digits of 1978™ are equal, respectively, to the
last three digits of 1978". Find m and n such that m + n is minimal.

(20th TMO)

Solution. Since 1978™ and 1978™ agree in their last three digits, we
have

1978™ — 1978™ = 1978™(1978" ™ — 1) =0 (mod 10%).

From the decomposition 10% = 23 - 53 and since 1978" ™ — 1 is odd we
obtain 23|1978™. From 1978 = 2 - 989, it follows m > 3.
Let us write m +n = (n —m) + 2m. Our strategy is to minimize m +n

by taking m = 3 and seek the smallest value of n — m such that
1978""™ =1 (mod 5%).

Since (1978, 5) = 1, the problem is to find the order h of the residue-class
1978 (mod 125). It is known that the order h of an inversible residue-class

modulo m is a divisor of ¢(m), where ¢ is the Euler function. In our case,
©(125) = 5%(5 — 1) = 100.

Hence, h|100. From 1978" = 1 (mod 125) we also have 1978" = 1
(mod 5). But 1978" = 3" (mod 5). Since the order of the residue-class 3
(mod 5) is 4, it follows 4|h. Using the congruence 1978 = —22 (mod 125)
we obtain:

19784 = (—22)* = 2% . 111 =42 . 1212
=4-(-4)*=(-1)2=26=6%1 (mod 125).
So we rule out the case h = 4. Because h|100, the next possibilities are

h =20 or h = 100. By a standard computation we have:
197820 = 6° = 2535 =32.(~7) = —224 =26 (mod 125) 1 (mod 125).

Hence we necessarily have: h = m —n = 100 and n + m = 106.



Glossary

Arithmetic function
A function defined on the positive integers and which is complex valued.

Arithmetic-Geometric Means Inequality
If n is a positive integer and aq, as, ..., a, are nonnegative real numbers,
then

1 n
=~ ai > (maz - an)t",
=1

with equality if and only if a; = as = - - - = a,. This inequality is a special

case of the power mean inequality.

Base b representation
Let b be an integer greater than 1. For any integer n > 1 there is a unique
system (k, ag, a1, . ..,ax) of integers such that 0 < a; <b—1,i=0,1,...,k,
ar # 0 and

n=apb® + ap_1b""T+ - +a1b+ agp.

Beatty’s Theorem
Let o and 8 be two positive irrational real numbers such that
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The sets {|a], |2a], [3a],...}, {18], 28], [38],...} form a partition of
the set of positive integers.

Bernoulli’s Inequality
For x > —1 and a > 1,
(1+z)*>1+ ax,

with equality when = = 0.

Bezout’s Identity
For positive integers m and n, there exist integers = and y such that mz +
by = ged(m, n).

Binomial Coefficient

(&) = mmy

the coefficient of 2* in the expansion of (z + 1)™.

Binomial Theorem

The expansion

((E+ )n_ nmn_"_nxnfl_"_nxan IS n mnfl_"_n n
= 0 1 Y 2 4 n—1 Y ny

Canonical factorization
Any integer n > 1 can be written uniquely in the form

— (679
n=p"...p.",
where p1, ..., pi are distinct primes and g, ..., ax are positive integers.

Carmichael’s integers
The composite integers n satisfying a™ = a (mod n) for any integer a.

Complete set of residue classes modulo n
A set S of integers such that for each 0 < i < n — 1 there is an element
s € S with i = s (mod n).

Congruence relation
Let a, b, and m be integers, with m # 0. We say that a and b are congruent

modulo m if m|a — b. We denote this by a = b (mod m). The relation

on the set Z of integers is called the congruence relation.
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Convolution product
The arithmetic function defined by

(Fg)m) =D fldg (%)

d|n

where f and g are two arithmetic functions.

Division Algorithm
For any positive integers a and b there exists a unique pair (g,r) of non-
negative integers such that b = ag+r and r < a.

Euclidean Algorithm
Repeated application of the Division Algorithm:

m=nq +7r1, 1<r <n,
n=rigz+rg, 1 <ry <y,

Th—2 = Th—1qk + Tk, 1 < g < Tp_1,

Th—1 = TkQk+1 + Tkt1, Tht1 =0

This chain of equalities is finite because n > r; > ro > -+ > rg.

Fuler’s Theorem

Let a and m be relatively prime positive integers. Then

a?™ =1 (mod m).

Euler’s totient function
The function ¢ defined by ¢(m) = the number of all positive integers n
less than m that are relatively prime to m.

Factorial base expansion
Every positive integer k£ has a unique expansion

E=11-fi4+2!- fo+3- fa+---+m!- f,

where each f; is an integer, 0 < f; <4 and f,,, > 0.

Fermat’s Little Theorem (F.L.T.)
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Let a be a positive integer and let p be a prime. Then

a? =a (mod p).

Fermat’s numbers
The integers f, = 22" 4+ 1, n > 0.

Fibonacci sequence
The sequence defined by Fy =1, F; =1 and F, 41 = F,, + F,,—1 for every
positive integer n.

Floor function
For a real number x there is a unique integer n such that n <z < n+ 1.
We say that n is the greatest integer less than or equal to z or the floor of

x and we denote n = |z].

Fractional part
The difference x — |x] is called the fractional part of z and is denoted by

{z}.

Fundamental Theorem of Arithmetic
Any integer n greater than 1 has a unique representation (up to a permu-
tation) as a product of primes.

Hermite’s Identity

For any real number = and for any positive integer n,
1 2 n—1
2]+ |+= |+ |+=| + -+ | +——| = [nz].
n n n

Legendre’s formula

For any prime p and any positive integer n,

Legendre’s function
Let p be a prime. For any positive integer n, let e,(n) be the exponent of

p in the prime factorization of n!.
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Legedre’s symbol
Let p be an odd prime and let a be a positive integer not divisible by p.
The Legendre’s symbol of a with respect to p is defined by

(a) B { 1  if a is a quadratic residue mod p

p —1 otherwise

Linear Diophantine equation
An equation of the form

a1y + -+ apy, =0,
where a1, as,...,a,,b are fixed integers.

Linear recurrence of order k
A sequence g, x1,...,Ta,... of complex numbers defined by

Ty = AQ1Tp_1 + A2Tp_2 + -+ AxTpn_k, N>k

where aq, as, . .., ax are given complex numbers and g = ag, 1 = aq, ...,

Tk—1 = Qp—1 are also given.

Lucas’ sequence
The sequence defined by Lg = 2, Ly = 1, L,y1 = L, + L,—1 for every

positive integer n.

Mersenne’s numbers
The integers M,, =2" — 1, n > 1.

Mdébius function
The arithmetic function p defined by

1 it n=1,
un) =< 0 if p%|n for some prime p > 1,
(=1)* if n=p;...pr, where pi,...,px are distinct primes

Mébius inversion formula
Let f be an arithmetic function and let F' be its summation function. Then

)= wa@F (%)
dn
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Multiplicative function
An arithmetic function f # 0 with the property that for any relative prime
positive integers m and n,

f(mn) = f(m)f(n).

Number of divisors

For a positive integer n denote by 7(n) the number of its divisors. It is

Tn)=)_1

d|n

clear that

Order modulo m
We say that a has order d modulo m, denoted by o,,(a) = d, if d is the
smallest positive integer such that a? =1 (mod m).

Pell’s equation
The quadratic equation u? — Dv? = 1, where D is a positive integer that

is not a perfect square.

Perfect number
An integer n > 2 with the property that the sum of its divisors is equal to
2n.

Prime Number Theorem

The relation
. m(n)
lim ——= =1,

logn

where 7(n) denotes the number of primes < n.

Prime Number Theorem for arithmetic progressions

Let wﬁ’f} be the number of primes in the arithmetic progression a,a+ 17, a +

2r,a + 3r, ..., less than n, where a and r are relatively prime. Then
lim LT’%(n) = 1
logn

This was conjectured by Legendre and Dirichlet and proved by de la
Vallée Poussin.
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Pythagorean equation

The Diophantine equation 22 4 y? = 22.

Pythagorean triple

2

A triple of the form (m? — n?,2mn, m? + n?), where m and n are positive

integers.

Quadratic residue mod m
Let a and m be positive integers such that ged(a,m) = 1. We say that a
is a quadratic residue mod m if the convergence 2> = a (mod m) has a

solution.

Quadratic Reciprocity Law of Gauss
If p and ¢ are distinct odd primes, then

<1%) (g) = (-1 "=

For a positive integer n denote by o(n) the sum of its positive divisors

Sum of divisors

including 1 and n itself. It is clear that

o(n) = Zd

d|n

Summation function
For an arithmetic function f the function F' defined by

F(n)=Y_ f(d)

d|n

Wilson’s Theorem

For any prime p, (p — 1)! = —1 (mod p).
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